

© 2023 Henning Diedrich Text: CC BY-SA 4.0, sources: AGPL3. www.lexon.org

The Holy Grail of Computational Law
H. Diedrich

hd@lexon.org
23 March 23

ABSTRACT

This paper describes an approach to realize a
centuries-old goal of Computational Law, its im-
plementation, how to use it, and how trustless-
ness can augment its usefulness. The basics of a
plain-text programming language are explained;
how to use its compiler to translate controlled
English into programs; the utility of its pro-
grammable token, and the foundational capabil-
ities it adds to trustless computing.

INDEX
Introduction ... 1
LANGUAGE ... 2
Grammar ... 4
COMPILER ... 5
Operation ... 5
Example ... 5
Use ... 6
Options .. 9
TOKEN ... 11
Utility .. 11
Accessibility ... 11
Interaction ... 12
Extensibility ... 14
Sale .. 16
CONCLUSION .. 18
DISCLAIMERS ... 19
LICENSE ... 19
APPENDIX ... 20
Example Compilation .. 20
Deploying to Ethereum .. 24
Example Interaction .. 25
Example Log .. 28
Example Abstract Syntax Tree 29
Programmable Money .. 30
Robotic Laws ... 31
Token Function Signatures 32
Gate Interface .. 34
INDICES ... 35

1 Leibniz’ thesis is regarded as the beginning of com-

puter sciences. For more on the history of Lexon, and
Computational Law, see https://lexon.org and the Lexon
book, 2020 – https://amazon.com/dp/169774768X.

2 See prof. M. Genesereth, 2021, What is Computational
Law? – https://law.stanford.edu/2021/03/10/what-is-
computational-law/.

3 Concretely, the document’s meaning is reflected in the
abstract syntax trees (AST) that the Lexon compiler
creates. See appx. Example Abstract Syntax Tree,

INTRODUCTION

A method to compute legal texts has been
searched for since Leibniz’ 1666 de arte combi-
natoria.1 While electronic discovery has become
the norm since the 1970s, the hope for electronic
analysis of legal texts – conceived already in the
late 1940s – as the complementary tenet of Com-
putational Law,2 had so far not been realized.

This changes with the language Lexon,
which makes it possible to make a computer ‘un-
derstand’3 the logic of a law or an agreement
and perform it. Lexon provides what Leibniz
was looking for: a way to program law,4 and con-
tracts – so transparently, that it is frequently
called no-code. This empowers lawmakers and
will reduce the cost of, and speed up access to
justice by magnitudes. It creates a high synergy
with blockchains, making smart contracts read-
able for all, providing a missing link to the par-
adigm of trustlessness5 by alleviating the need
to trust the programmers. And importantly, to
enable the use of smart contracts in business, it
makes smart contracts readable for judges. Yet,
Lexon might find broader application in trust-
ful ibid. 5 settings and as a new form of legalese.

As a programming language, Lexon is the
first of a new generation – arguably, the 6th and
last before computers can reliably6 read any hu-
man text. As an AI tool, Lexon complements
machine learning: intelligent agents pro-
grammed in Lexon solve real-world problems,
are unbiased, excel in transparency and provide
unparalleled agency to users. Most consequen-
tially, digital contracts written in Lexon elevate
prose to a speech-act of felicitous performative
language7 when performed in a trustless envi-
ronment: due to the unstoppable nature of the
blockchain, these words become true by uttering

pg. 29; cf. Processing Meaning in Lexon, ibid., pg. 89.
4 Cf. Clack and Reyes, footnotes 24 and 25, pg. 3.
5 In blockchain parlance, trustless means secured by

blockchain mechanics – trustful means without such
technical guarantees, depending on trust in someone.

6 Note that 100% determinism – often translatable to
accuracy – is required in many professional use cases,
which is a well-known challenge for machine learning.

7 J. L. Austin, 1955, How to Do Things with Words.
First noted by David Bovil.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 2 www.lexon.org

them; a power commonly associated with
magic. And rightly so: In effect, such illocu-
tion ibid. 7 needs neither judges nor litigators and
will enable long-tail markets that now cannot
exist because their margins could not sustain
the cost of policing them. Seen as AI, an artifi-
cial judge is being built right into every digital
contract: the computer will provide a determin-
istic result, as the case may be. This makes vi-
able the very simple as well as the very complex.

The Lexon compiler (pg. 5) translates plain
text that adheres to the Lexon grammar (pg. 4)
into code that machines understand. The tech-
nical approach that the compiler implements
has long been suspected to be a feasible path to
give machines a handle on natural language but
had so far successfully been applied only to first-
order logic,8 which typically does not suffice to
express relevant programs. 9 Lexon, like most
programming languages and the language of
law,10 is based on higher order logic.11

Programmable tokens (pg. 11) complement
the power of plain-text programming, allowing
for the expression of more fine-grained rules, as
well as reacting to specific events. For example,
to partially divert tokens the moment they come
into an account; or to revert transfers within a
pre-determined time window. Interventions like
these are not attainable through smart contracts
alone but must be anchored on a deeper level,
at the level of the token implementation.12

Another contribution of the programmable
tokens is modularity, allowing the building of a
complex system in a more deliberate way with
smart accounts interacting instead of smart con-
tracts (pg. 14). As they generally cannot be
changed much, once deployed, the functionality
of smart contracts must be decided in its total-
ity13 before they are put on the chain. This ham-
pers not only error correction but progress as a
whole. The per-account extensions of the pro-
grammable tokens address this limitation, intro
ducing to blockchains the Lego-block type loose-
ness that enabled the growth of the internet.14

8 Attempto Controlled English (ACE) stands out. It

compiles to 1st order Discourse Representation Struc-
tures – http://attempto.ifi.uzh.ch

9 Prolog and its heirs add a lot of fascinating math to
their first-order logic clauses to make things work.

10 See Law and Logic, the Lexon book, ibid., pg. 63.
11 Lexon’s stack is different; see Lexon, ibid., pg. 112.

Essentially, code and natural language are parsed in
the same step, with far-reaching consequences.

12 Of course, the ERC20 implementation of a token is
itself a special case of a smart contract. In the above,

LANGUAGE

Lexon is a plain-text programming language.
This means that it reads like natural English
and digital contracts written in Lexon can be
understood by anyone, without requiring any
prior knowledge of programming. With moder-
ate effort or guidance by commodity AI, every-
one will be able to write them. Lexon is also
understood by machines. Its grammar expresses
the intersection of what both humans and ma-
chines can parse. Grammars and compilers will
evolve to extend their reach into both domains.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow,
appoints the Payee, appoints the Arbiter,
and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the
remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 1 – Lexon digital contract example

Lexon allows for the articulation of unam-
biguous prose15 and the deterministic computa-
tion of logical results from it. Its grammar over-
lays natural language and higher order logic, in
the way that Wittgenstein16 demanded. For ar-
tificial domains, this may complete the quest for
an unambiguous, universal language for philo-
sophy and pure thought as envisioned by
Leibniz, Wilkins, Frege, Russel, or Carnap.

smart contract is to mean a program that does inter-
esting things with tokens rather than the special case.

13 A typical challenge in computer sciences that smart
contracts share with other powerful paradigms requir-
ing a holistic approach, e.g., functional programming.

14 See Decentralization of Logic, pg. 15.
15 The above example is really a template: The concrete

contract will have digital or descriptive identifiers in-
serted for the parties.

16 L. Wittgenstein, 1953, Philosophical Investigations.
Asst. prof. Andrea Leiter first noted the connection.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 3 www.lexon.org

Lexon achieves this differently than was
long supposed to be the way.17 It arguably de-
veloped in a blind spot caused by the focus on
the meaning of words that emanated from ana-
lytical philosophy and informed the develop-
ment of early, general artificial intelligence.18 In-
stead of trying to define words out of context,
all we might ever (need to) know is the context,
or as the later Wittgenstein proposed: “the
meaning of a word may be defined by how the
word can be used as an element of lan-
guage.” ibid. 16 Lexon focuses on the use and fun-
damentally abandons the notion that meaning
is vested in nouns. In so far as this is a struc-
turalist argument, it shifts the context from the
language to the four corners of an agreement.19

The result is that in Lexon texts, nouns
tend to be interchangeable, and meaning is
transported instead by the relationship between
the nouns that the text describes. What matters
is that the same name, or noun, is used consist-
ently to refer to the same entity throughout one
digital contract. Their common meaning can
contribute to readability – but not to the spe-
cific meaning of the document.

Lexon shares this feature with mathemati-
cal formulas and any programming language; it
is in keeping with how in business contracts,
nouns are promoted to proper names to increase
clarity: uncoupling from the inert meaning of
words, and instead putting them into the service
of the context, as neutral markers. Preferably,
meaningful markers, but to be ignored by a
judge when discerning the meaning of a con-
tract. To exaggerate, the one word Lexon actu-
ally20 understands is transfer. Which is unsur-
prising as this is the only act computers can per-
form: to transfer bits from one register to an-
other. This anchors Lexon texts; everything else
is qualifiers. Again unsurprisingly, this approach
covers many types of agreements, as the transfer
of something is the common topic of contracts.

17 Cf. Wilkins, 1668, https://archive.org/details/AnEssay-

TowardsARealCharacterAndAPhilosophicalLanguage
and https://www.youtube.com/watch?v=TjdbrLxc3Ck

18 See https://lexon.org for the forthcoming paper on
Lexon Intelligent Agents that elaborates on Lexon’s
role as a tool for general artificial intelligence.

19 To make it concrete is a key philosophical demand.
20 See https://lexon.org/vocabulary & the Lexon BIBLE,

2020, https://www.amazon.com/dp/1656262665
21 Lexon uses Generalized Left-to-right Rightmost pars-

ing (GLR), first implemented by Masaru Tomita for
natural languages in 1984: LR Parsers for natural lan-
guages; first proposed for extensible languages by

An elemental contribution of the Lexon ap-
proach is how it maps natural language to
compiler building tools – intuitively convincing,
and in line, too, with what the tools were
designed for21 – yet different from what com-
puter sciences had gotten used to in the chase
for ever faster compile times. Only a simple ex-
tension to an established meta-language
(BNF22) was required to better describe natural
language grammar, for Lexon to stand upon the
shoulders of the giants who paved the way.

Because Lexon solves a long-standing
question of Computational Law, it works for
blockchain smart contracts, as well as off-line –
and even off-machine. Transcending computers,
it may23 over time replace today's legalese as a
more useful, less ambiguous, and more readable
language of law and contracting. The work of
professors of law and computer sciences regard-
ing Lexon24, 25 may serve as inspiration in imag-
ining the progress that could be possible; also
for a two-thousand-year-old industry that is do-
ing just fine.

Lexon is for everyone, not only for law-
makers and programmers, and it enables the
coming profession of the legal engineer. But for
its advantages in transparency and accessibility,
Lexon may become a mainstream programming
language: new programming languages are suc-
cessful when, to increase productivity, they can
strengthen teamwork or reduce sources of er-
rors. Lexon does both. Going beyond what ob-
ject-oriented programming achieved for team-
work of programmers, Lexon includes non-pro-
grammer domain experts, expanding the con-
cept of team to reach beyond the circle of cod-
ers. And while developers might see no reason
to leave the current mainstay of 3rd generation
programming languages behind, their employers
will find it desirable to increase transparency,
and to have legal, business, and domain experts
verify the programmers’ results first-hand.

Bernard Lang: 1974, Deterministic techniques for effi-
cient non-deterministic parsers.

22 Bachus-Naur form (BNF) is a metasyntax notation to
describe the grammar of computer languages, first
used to describe the grammar of ALGOL in 1960.

23 An expectation articulated by law scholars.
24 Prof. Christopher C. Clack, 2021, Languages for Smart

and Computable Contracts – https://arxiv.org/ftp/
arxiv/papers/2104/2104.03764.pdf

25 Asst. prof. Carla L. Reyes, 2021, Creating Cryptolaw
for the Uniform Commercial Code – https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=3809901

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 4 www.lexon.org

GRAMMAR

The Lexon approach is independent of a specific
natural language and the Lexon grammar com-
piler allows for a multitude of natural languages
to be implemented.26

Lexon Grammar Form
Lexon grammars are defined in Lexon Grammar
Form (LGF),27 which is similar to Backus-Naur
Form (BNF),ibid. 22 enhancing readability to bet-
ter capture the complexity and redundancy of
natural language. For example, LGF’s square
brackets resolve optional elements as expected:

sentence:

 subject [condition [","] [":"]] predicates separator

Source 2 – Lexon Grammar Form (LGF) example

The above rule is equivalent to:28

sentence:

 subject predicates separator
 or subject condition predicates separator
 or subject condition "," predicates separator
 or subject condition ":" predicates separator
 or subject condition "," ":" predicates separator

Sentence Structure
Lexon’s English grammar realizes the English
natural language sentence structure of subject,
predicate, object. That Lexon reflects this core
pattern of natural language ibid. 3 sets it apart
from other programming languages. Note how
the object is included in the predicate:

sentence: subject [condition [","] [":"]]
predicates separator

predicates: predicates "," ["and" ["also"]] predicate
 or predicate

predicate: payment

…

payment: pay expression preposition object

pay: "pay" or "pays"

preposition: "to" or "into"

Source 3 – Lexon sentence grammar (detail)

26 The Lexon approach has been tested for English, Ger-

man, and Japanese. The indication is that it will work
for most languages, with English being one of the least
challenging cases. See https://lexon.org.

The above rules are employed to parse a
sentence like this recital:

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

Source 4 – Lexon code example sentence

Document Structure
Lexon’s grammar includes the layout of the doc-
ument structure. This makes it harder to write
ambiguous agreements. It reflects a common se-
quence of the parts of a contract.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 5 – Lexon document structure

The internal representation that the com-
piler creates during the translation is shown in
appendix Example Abstract Syntax Tree, pg. 29.
It visualizes the binary relationships that the
compiler actually ‘understands’ from the sen-
tence in Source 4.

The reduced grammar of Lexon forces sen-
tences to be written straightforwardly, even
when nested and verbose. The fact that the
grammar is parseable by a computer guarantees
mathematical unambiguity even though many
redundant ways of expressing the same meaning
have been enabled. The grammar still provides
a one-way funnel; the flexibility is not bidirec-
tional: the same can be articulated in many dif-
ferent ways but each way has only one meaning.
It is exactly this that is achieved by limiting
English grammar to a controlled grammar.

27 For more information on LGF see https://lexon.org/lgf

28 Note the last rule that would not be correct English
punctuation but is not ambiguous either.

 Head

 Definitions

 Recital

 Clause

 Clause

(sic)

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 5 www.lexon.org

COMPILER

The Lexon compiler29, 30 accepts text adhering
to the controlled grammar described above and
transposes this natural-language code36 to com-
mon 3rd generation programming languages like
the ubiquitous, all-purpose Javascript or the
preeminent blockchain language Solidity. Lexon
Programmable Tokens31 provide metered access
to the online Lexon compiler.

Javascript is more interesting for Compu-
tational Law – the compilation process is the
same as for Solidity but it is simpler to run –
though it lacks a blockchain’s facility to broad-
cast and transfer value. However, through a
signed logging mechanism,32 the Javascript pro-
grams produced by the compiler33 can write a
stand-alone, trustless chain of log entries that
can be shared like a ‘micro blockchain’34 among
the interested parties of (and third parties to) a
contract.

OPERATION

Figure 1 – Compiler screen at lexon.org/compiler

The online compiler is operated as follows:

a. text paste text into field a.

b. compile click compile button b.

c. result the resulting program
 code is shown in c.

d. options to execute special func-
 tions, discussed below,35
 check boxes in list d.

29 A compiler is basically a program that helps create

other programs. It processes human-written files to
create output that can be executed by a computer.

30 Online at https://lexon.org/compiler
31 See Token, from pg. 11.

EXAMPLE

For example, the Lexon text given in Source 1,
pg. 2, could be pasted into field a. Checking
barebones in d., then clicking b., the Lexon
compiler would translate the text in a. into this
succinct Javascript code and show it in c.:

module.exports = class Escrow {

 constructor(payer, amount, payee,
 arbiter, fee) {
 this.payer = payer;
 this.payee = payee;
 this.arbiter = arbiter;
 this.amount = amount;
 this.fee = fee;
 this.tx_(this.payer, 'escrow');
 }

 pay_out(caller) {
 if(caller == this.arbiter) {
 this._pay('escrow',this.arbiter,
 this.fee);
 this.tx_('escrow',this.payee);
 } else {
 return 'not permitted.';
 }
 }

 pay_back(caller) {
 if(caller == this.arbiter) {
 this.tx_('escrow’,
 this.arbiter, this.fee);
 this.tx_('escrow', this.payer);
 } else {
 return 'not permitted.';
 }
 }

 tx_(from, to, amount) {
 console.log(`➠ system message:
 transfer ${amount} from ${from}
 to ${to}.`);
 }
}

Source 6 – Compilation example
(Javascript, barebones)

The above code is optimized for demon-
stration purposes: it is short, not cluttered with
comments, handling of fringe cases, nor extras
like logging or state persistence. The settings d.
controlling the output in c. are described be-
low.35 For a significantly more complex output
from the same plain-text input, see appendix
Example Compilation, from pg. 20. It adds all
the elements that barebones tells the compiler to
leave out, for a lot more code and comments.

32 See History, pg. 8.
33 Sic: the log is produced by the code that the Lexon

compiler generates.
34 See The Micro Blockchain, pg. 8.
35 See Options, pg. 9.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 6 www.lexon.org

From the same Lexon text,36 Source 1, the
Lexon compiler can also produce a Solidity smart
contract for use on the Ethereum blockchain:

pragma solidity ^0.8.17;

contract Escrow {

 address payable payer;
 address payable payee;
 address payable arbiter;
 uint amount;
 uint fee;

 constructor(address payable _payee,
 address payable _arbiter, uint _fee)
 payable {
 payer = payable(msg.sender);
 payee = _payee;
 arbiter = _arbiter;
 fee = _fee;
 }

 function pay_out() public {
 require(msg.sender == arbiter,
 "not permitted");
 transfer_(arbiter, fee);
 transfer_(payee,
 address(this).balance);
 }

 function pay_back() public {
 require(msg.sender == arbiter,
 "not permitted");
 transfer_(arbiter, fee);
 transfer_(payer,
 address(this).balance);
 }

 function transfer_(address to_,
 uint amount_) internal {
 (bool success_,) =
 to_.call{value:amount_}("");
 require(success_,
 "Transfer failed.");
 }
}

Source 7 – Compilation example (Solidity, barebones)

Compilation with the Ethereum Solidity
compiler to deploy to an EVM-compatible
blockchain is trivial.37 A one-click deployment
process from a Lexon text to the deployed smart
contract has been demonstrated. Setups that in-
clude the generation of a user interface to inter-
act with the contract on the chain are supported
by the ui info option.38 A trustless Javascript
example is discussed next.

36 Lexon text, code and source are used interchangeably.
37 See example in appx. Deploying to Ethereum, pg. 24.
38 See option ui info, pg. 10.
39 Specifically, the readability of the primary input text,

i.e., the transparency of the core business logic, to in-
clude non-programmers into its design and discussion.

40 Lexon develops towards one-click deployment, to fully
empower non-coders. Because it is self-documenting,

USE

Lexon’s contribution is the translation from hu-
man language to the language of machines.39
This section explores the machine angle, to help
understand how Lexon’s results can be embed-
ded in a larger system; it is not concerned with
Lexon text nor the Lexon compiler: it explains
their product.

Focusing on Computational Law, the
Javascript output is being discussed below,
including a trustless mode, using signed logs.
The use of the Solidity code is obvious.ibid 37

Running a resulting Javascript program
manually requires beginner’s programmer know-
ledge. It is valuable for research but is not the
intended production use.40 Embedding resulting
code into a user interface, i.e., creating an app,
is a routine task for a full-stack programmer.

Javascript output is executed using node.41
The following uses a concrete example, again
the Source 1 (pg. 2), compiled with the option
all auxiliaries. 42 The full resulting Javascript
code is shown in appendix Example Compilation
(pg. 20). The examples assume that the Javas-
cript code resides in the file ./escrow.jsx.

For an example terminal dialog of a live in-
teraction with a Javascript digital contract, see
appendix Example Interaction, pg. 25.

Prerequisites
When using the all auxiliaries option, the fol-
lowing node modules must be installed:43

 $ npm install serialize-javascript
 $ npm install tar
 $ npm install nodemailer
 $ npm install prompt-sync

Call Parameters
To execute examples, replace the parameters in
angle brackets < > with literal values, e.g.,
“Jane” for <<payer>>, 10 for <amount>. The re-
quired caller is marked by double angle brackets
<< >>. This designates the person whose

and structured like a document, all information re-
quired for UI generation is present in a Lexon text.

41 Node is a Javascript interpreter – https://nodejs.org
42 See all auxiliaries, pg. 10.
43 The required external modules are listed in the lead-

in instructions comment section of the generated pro-
gram code. Cf. Source 12, pg. 24. They vary, depend-
ing on Lexon code input and compiler options used.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 7 www.lexon.org

passphrase will be required during the call if
logs are signed44 (see below).

If a role was not defined earlier, a call
makes the role be assigned to the person named
in the call: “Jane” becomes the <<payer>> by the
first call that uses her name as <<payer>>. If a
role was defined earlier, it can only be assigned
to the same person45 in subsequent calls: “Jane”
must consistently be used for <<payer>> after
having been used as payer once. Otherwise, the
call will be rejected. This resembles how func-
tional programming binds values, as well as how
variables are understood in mathematics, and
how natural language uses nouns to define roles
implicitly. It is unusual only for 1st to 3rd gener-
ation programming languages.

The state for the internal checks is held by
node between calls. State can be persisted.46

Initialization
The contract system is initialized by loading the
module at the node console and instantiating it:

 $ node
 > contract = require(<code path>);
 > escrow = new contract(<<payer>>,
 <amount>, <payee>, <arbiter>,<fee>);

For example, using these literal values:

 $ node
 > contract = require("./escrow.jsx");
 > escrow = new contract(“Jane”, 10,
 “Joe”, “Alice”, 1);

Developing
Reset node's module cache each time you edit
and recompile code, i.e., when experimenting:

 > delete require.cache[
 require.resolve('./escrow.jsx')];

44 This is a similar rhythm to how, e.g., Metamask helps

users sign transactions in a blockchain setting.
45 The focus of Computational Law is generally correct-

ness. Javascript makes this example per se trustful:
anyone could manipulate anything – there is just no
gain in it, as a counterparty would immediately spot
it. The signed log, however, cannot be manipulated
and allows for trustless operation. Cf. History, pg. 8.

46 See Persistence, pg. 8.
47 The number of parameters of a function.
48 Cf. the appendix Example Compilation, pg. 20, and

https://lexon.org/reyes.html for a longer example, as

Core Functions
The main state progress functions that allow to
interact with this example contract, are:

 escrow.pay_out(<<arbiter>>)
 escrow.pay_back(<<arbiter>>)

The function names are derived from the
Lexon text, in the example from the clauses Pay
Out and Pay Back. Different Lexon texts will
result in different functions, parameter names,
and arity.47 Respecting scope and binding, pa-
rameters are deduced from the names that ap-
pear in the respective clauses. A larger example
will have many core functions.48 Their meaning
is described by the Lexon text itself, e.g., the
text of the clause Pay Out perfectly describes
the core function pay_out(), because the latter
was created from the former:

 CLAUSE: Pay Out.
 The Arbiter may pay from escrow the Fee
 to themselves, and afterwards pay the
 remainder of the escrow to the Payee.

The fact that the Lexon code precisely de-
scribes the Javascript code, contributes to the
long-standing search in computer sciences for
self-documenting code.49, 50 It is of special value
for the automated creation of UIs.

Trustless Contracting
The option all auxiliaries also triggers the crea-
tion of the following support functions that do
not relate to individual Lexon clauses.

Most of them help to enable trustless oper-
ation of the Javascript code. To this end, user
interactions with the contract are logged in a se-
cure way; the state of the contract can be per-
sisted; and log, state and contract code can be
bundled to conveniently be archived and sent to
a counterparty.

well as more details on the code presented in Creating
Cryptolaw for the Uniform Commercial Code, ibid.

49 See comments, pg. 10.
50 The reality is that most programmers are not fond of

commenting and time pressure does not help, so that
many developers call ‘DRY’ code the best, as it does
not suffer from the irritations of bad – or worse – dep-
recated comments. But DRY stands for Don’t Repeat
Yourself, i.e., do not repeat in the comments what the
code itself expresses. While this has virtue it also guar-
antees that today, in many important projects only
programmers understand the code.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 8 www.lexon.org

History
All state changes of the contract are written to
a log51 if the log option was selected during com-
pilation. In our example, this includes actions
performed by the neutral party called Arbiter.
The log can be displayed with:

 escrow.history()

The options chaining and signatures make
the log trustless: an unforgeable trace of who did
what, when. Each such log entry has this format
(in one line):

									⧉		<hash> ⌽ <timestamp> ✦ <role>
 ✓ <clause or noun> ❈ <signature>

Figure 2 – Hashed and signed log format

• ⧉	For every entry, the hash is the
SHA-256 of the entire log file up to
this point, from its first entry through
the last signature.

• ⌽	The timestamp in plain text.
• ✦ The role name: can be a real name,

an alias, a number, a public key or a
hexadecimal Ethereum account id.

• ✓ The call’s clause name as given in
the Lexon code, or a noun being fixed

• ❈ The signature of the given role for
all that came before ❈ in this entry.

A log entry looks like this:52, cf. 102

⧉ f3b21bde6076 ⌽ 3/22/2021, 1:34:22 AM
✦ FILER ✓ Collateral fixed ❈
6ff7ab169e49f2f574c7f13497a0c134eb5987476
a6fcc35515b60775cdaef75afa1bcdae06be79659
21cf36da228aec1b195f21b4696249d327a6799ef
ca1d5dd176ec95050407de40427dbdf5af8a6d4a6
e9eb88271717c51d7cded996fc931be7e1c932716
c26ee3cfbb2281579061342c9101e4bf66974ad85
e36c6dcca156fd1c6040f5f2925e4ae77e3b9b2c8
c7644020f86971d958600b8a17e2385f6d5d8c3c5
05f649d1a97852116869f2bca53fa172f63d05b88
eda1f312620bab5a90bf35334dc4a3890f737a7ad
950791e1c49eeabd5b64c51a3a6046cada2421e18
726643bbff3a7fe63ce18b15af0332972635caeca
c4bafc0659d4f71d3675

Source 8 – Log entry example

51 This log is created by the program that the Lexon

compiler generates, not the Lexon compiler itself. The
compiler creates the code that creates the log.

52 For a longer example see appx. Example Log, pg. 28.
53 See instructions in the generated Javascript code, and

the forthcoming paper Lexon Microchain at lexon.org.
54 The three common functions of money are, to serve as

store of value, as a unit of account, and as a medium
of exchange. All three functions are expected from
blockchain ‘coins’ but they can be utilized indepen-

The Micro Blockchain
Hashes and signatures protect the integrity of
the log ibid. 52 like a blockchain would53 – without
a blockchain. A major difference is that someone
could ‘lose’ the log whereas on a public block-
chain, data is always accessible, and its consen-
sus mechanism can help if two parties act at
nearly the same time. Logs also do not support
coins. But the essential upshots of a log-based
microchain is that the contract state remains
perfectly private, and the administrative effort
is much lower: It can be magnitudes less costly
in a business context to make a log accessible to
all involved, than to operate a full-blown block-
chain setup. Especially if the aim is to improve
bookkeeping, i.e., when using tokens as a unit of
account only and not as a store of value.54 In
business settings this will often be the more in-
teresting use of tokens. A dedicated microchain,
therefore, can be the more productive trustless
solution. It offers guarantees similar to a block-
chain, by the same method: re-iteratively hash-
ing what came before and signing off on it.55

Persistence
The contract state56 can be saved to disk and
re-loaded at a later point in time, using a file
that is literally called state. This serves to con-
tinue work after stopping and restarting node;
and to allow for the sending of the entire con-
tract system – state, code, and log – to a coun-
terparty, who may perform the next step.

 escrow.persist()
 escrow.load()

Bundling
The contract code, state and log can be bundled
into a tar archive, called contract.tgz, to more
conveniently exchange or archive it.

 escrow.bundle()
 escrow.unbundle()

dently. Tokens do not have to be a store of value to
be useful: They can help to understand how a business
should be fairly settled – especially when parties trust
each other or are fine with the legal system as back-
stop, e.g., for inter-department bookkeeping.

55 See the original Bitcoin whitepaper: Nakamoto, 2008,
Bitcoin – https://bitcoin.org/bitcoin.pdf.

56 The term state means the current situation: the cur-
rent internal variables of the contract. The log is the
step-by-step list of events that led up to the current
state. As such, a state is confirmed by its log.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 9 www.lexon.org

The bundle contains the files state, and log,
the source code, 57 and a file named
INSTRUCTIONS.TXT that gives the receiver a
first idea of what the bundle of files is about.

Email
The bundle can be sent to a counterparty. This
can be done manually or by using the built-in:

 escrow.send()

The function uses the email account con-
figured in a json file called config:

 { email: {
 host: ‘<host>’,
 port: <port>,
 user: '<email account user>',
 pass: '<email account password',
 from: '<email account address>',
 subject: ‘<subject line>’,
 text: '<massage text>'
 } }

Source 9 – Email configuration

The host and port entries can be summarily
replaced by service: ‘gmail’ to utilize an ex-
isting gmail account.

Microchain Client
The easy to use, forthcoming microclient will
streamline a fully private, decentralized, peer-
to-peer setup, handling the log exchange directly.
It is beyond the scope of this paper.ibid. 53

Keys
Keys for signing log entries are expected on-file,
named after the actor, with the extension .key,
e.g., Joe.key. For demonstration purposes, keys
can be created using this utility function:

 system.create_key(<name>, <passphrase>)

The resulting private key is written to disk,
in the current directory, named <name>.key, e.g.,
Joe.key. The passphrase given in this call is not
the private key but used to encrypt the private
key in the file. It is this passphrase that is que-
ried when running the contract.58

This convenience function is included to fa-
cilitate research; do not use it in production
without assessing your risks first.

57 At the command line, the compiler can learn the name

of the source code file from the -o parameter. The code
is generated accordingly. Online, a name is derived
from the contract name following the LEX keyword.

OPTIONS

Settings for the compilation process are made in
the compiler screen at https://lexon.org/com-
piler (see Figure 1, pg. 5) by ticking boxes in
screen area d. Not all options are interesting for
everyone. Those more relevant to beginners are
marked with an asterisk.*

Results shown in screen area c. (ibid.) will
vary: some settings in d. cause information to
be displayed in c., instead of code. In some in-
stances, the contents of field a. will be ignored
when button b. is clicked: e.g., when checking
version in d., the version number of the com-
piler is displayed in c., no matter the contents
of field a. When checking the option names, the
list of all symbols (defined nouns) that are found
in the Lexon code given in a. is listed in c. For
some combinations of options, the output in c.
will be a mix of code and other information.

Auxiliary Options

version*
Display the compiler version information in c.
echo source
List the Lexon source code that will be pro-
cessed in c., but not the compilation result, to
double check what input arrives at the compiler.

no result
No output of resulting code in c., to focus on
other output, triggered by other options.

Developing Lexon Code
The following options can be helpful when writ-
ing Lexon texts. The online compiler serves as a
convenient sounding board to find one’s syntax
errors and to explore what document structure
will make sense for a task at hand.
verbose*
Trace detailed compilation steps in c., to find
errors in the Lexon text given in a.

precompile
Show sanitized – pre-compiled – source code in
c. and no compilation result. This shows the li-
brary59 texts included in the source code, and
the line numbering that error messages refer to.
It also allows verification that definition and
clause names are recognized as intended.

58 See appendix Example Interaction, pg. 25.
* option more likely of interest for beginners.
59 Libraries contain text written to be used and re-used

in multiple projects. It is inserted into the main text.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 10 www.lexon.org

echo-precompile
Show precompiled Lexon source code in c. and
also the compilation result.

names*
List all names found in the Lexon code in c. As
names can contain spaces, this list can help to
check if they were parsed correctly.

barebones*
The generated code is a simplistic ‘happy path’
for demonstration purposes. It does not have
comments and does not catch errors or edge
cases. This is a starting point to verify semantics
and basic flow. It is an interesting learning de-
vice that visually surfaces the relationship be-
tween the Lexon text and the resulting program.

comments*
The generated code embeds the Lexon text and
generic comments to help the auditing of it.

instructions*
The generated code has detailed instructions for
use in its lead-in comments section. They resem-
ble the discussion of the example code in chap-
ter Use on pg. 6, and reflect the specific Lexon
code at hand, listing all relevant core functions
and their parameters.

feedback*
The resulting Javascript code confirms calls on-
screen. This is helpful for learning, experiment-
ing and manual demonstrations from the con-
sole. The default – no feedback – is for produc-
tion scenarios where the code is not supposed to
talk back but a dedicated UI guides the user.

harden
The generated code checks for unset arguments
and variables. This impacts readability of the
output but is essential to catch user errors.

log
The generated code logs state changes to a file,60
literally named log. This does not automatically
activate hashes and signatures (see below): the
log is by default trustful.

signatures
The generated code prompts users for a pass-
phrase to sign log entries,60 using the key in the
file named like the caller,61 with extension .key.

60 See Trustless Contracting, pg. 7.
61 See Call Parameters, pg. 6.

chaining
The generated code hash-chains log entries.
This secures the log against manipulation, in-
terconnecting its entries the same way that
blockchain blocks are hashed and signed to build
the eponymous chain of blocks.ibid. 60

persistence
The generated code can store state in a file, lit-
erally called state.

bundle
The generated code can tar the Lexon code, the
Javascript code, the log, the contract state, and
an instruction text into a file called, literally,
contract.tgz.

all auxiliaries
The generated code features the options: com-
ments, instructions, feedback, harden, log, sig-
natures, chaining, persistence, and bundle.

Interfacing
This option produces the information needed for
front-end generation for Lexon code:

ui info
Shows a JSON object encoding insights about
the source code in area c.

Developing Lexon Grammars
The following options support the development
of new Lexon grammars, for different natural
languages other than English.62

keywords
List in c. the keywords – the vocabulary – un-
derstood from an LGF63 grammar provided in a.

bnf
Produce BNF ibid. 22 from an LGF grammar pro-
vided in a. This is useful to verify that optional
terms in the LGF grammar spell out the in-
tended individual BNF rules. The BNF is GNU
Bison-compatible, which can help to create new
targets, i.e., output in additional 3rd generation
programming languages.

comments
Include the LGF rules in the BNF output as
comments.

62 See https://lexon.org on creating new grammars.
63 See Lexon Grammar Form, pg. 4.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 11 www.lexon.org

TOKEN

As legal agreements have a broader scope of
concepts than covered by ERC20,64 the token
implementation adds functionality that allows
for more powerful digital contracts. It also pro-
vides access to the Lexon online compiler.

UTILITY

The Lexon Programmable Token serves as a
standard library65 for the Lexon language and
includes an event-driven74 programming frame-
work that allows the building of trustless logic
under a new paradigm, smart accounts.66 This
introduces an edge that blockchains normally
lack: arbitrary, programmable restrictions on in-
dividual accounts, making the core legal concept
of obligationibid. 66 available to the otherwise
strictly optional world of smart contracts. The
token thus adds a foundational element that in-
creases the overlap of code and law and demon-
strates new, academically and commercially in-
teresting features like programmable money.67 It
extends the breadth of the Lexon language, al-
lowing for more expressive68 digital contracts. In
many cases, desired contract details would be
impossible to realize without the new functions
of the token, because what an underlying sys-
tem does not provide, a language cannot sup-
port. Logically, the token enhances the scope of
the trustless membrane that determines what
functionalities can be performed in one coher-
ently protected sequence without having to
trust a third party for an intermediate step.69

Notably, the token also features conditional
reversibility of transactions,70 an essential at-
tribute blockchains will have to offer to become
relevant in traditional business settings.71

The token serves as subscription mecha-
nism for the online compiler. It functions as a
voucher to buy translations of Lexon texts into
computer programs. The number of tokens held

64 ERC20 is the main Ethereum token standard. See

https://eips.ethereum.org/EIPS/eip-20 and /eip-2612.
65 The Solidity function signatures are listed in appx.

Token Function Signatures, pg. 32.
66 See Extensibility, pg. 14.
67 See P2P Financial Systems 2018, FED Cleveland –

https://lexon.org/programmable-money-2018.pdf and
appendix, Programmable Money, pg. 30.

68 Expressivity in computer sciences is a measure of how
much can be achieved with how many words. Pro-
gramming languages differ by magnitudes in it, de-
pending on the task at hand. Expressivity influences

is the number of translations of Lexon texts
that the owner can perform per month.72

The token is ERC20 and ERC2612-compat-
ibleibid. 64 and easily accessible through ERC20-
compatible wallets. When used for Deeds,73 an
account switches to ERC721 (NFT)-compatibil-
ity, but all tokens remain accessible and usable.

ACCESSIBILITY

The token’s features reflect its function as online
voucher for using the Lexon compiler, and as
enabler of the Lexon language. It also provides
improved usability both for real-world business
requirements and non-specialist users.

Engage
Accounts can be engaged, to use the Lexon com-
piler, or unlocked to allow for faster transac-
tions. The default is engaged, unless the first to-
kens came in from an unlocked account. An en-
gaged account can connect to the Lexon com-
piler and run one compilation per month72 for
every token in the account. The tokens are not
consumed but remain in the account. To unlock,
a delay may have to be respected.

To prevent defeat of the bookkeeping by
account-hopping, an engaged account can only
transfer tokens out to another account, one
month72 after the last transfer-in from any other
account. The account can also be unlocked only
one month72 after the last transfer in, including
purchase. An unlocked account cannot run com-
pilations but can transfer out any amount at
any time. It can be set engaged at any time,
without delay, to use the compiler immediately.

Through this method, the Lexon tokens
can be used and received without making an
Ethereum transaction. The subscription mecha-
nism is thus free of Ethereum transaction costs
and cannot be impacted by Ethereum chain
congestions. One can use the online compiler
without owning or spending Ether.

programmer productivity. And the more expressive a
language is, the ‘higher’ it is often understood to be,
as well as less costly to use, for safer and faster results.

69 The innovation is informed by business needs that
kept surfacing in Fortune500 consulting engagements.

70 See Reversibility, pg. 13.
71 Regarding the importance of reversibility, cf. Lexon –

Legal Smart Contracts, 2017 – https://lexon.org/lexon-
whitepaper-2017.pdf. The implementation presently
described is a different approach to the same utility.

72 A month is defined as exactly 30 days.
73 See Deeds, pg. 13.

signatures pg. 32

signatures pg. 32

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 12 www.lexon.org

Sealing
The owner can seal an account to not accept
transfers of tokens to it. If the account is also
engaged, the seal disables all passive transfers
out. If an attempt is made to transfer to or from
a sealed account, it is reverted, unless the other
account is on the whitelist. The seal can be made
or dropped at any time. It helps protecting en-
gaged accounts from being spammed, which
could make it impossible to ever unlock them.
The whitelist is per-account; the account owner
can whitelist and delist other accounts at will.
Incoming transfers from whitelisted accounts
still trigger the delay described above.

Serial
Every account in use has a unique serial num-
ber, assigned at the time of the first reception
of tokens to it. Token transfers can be made to
the serial number, which is easier to remember
and verify than the hexadecimal account ad-
dress. Note that an account can ‘exist’ in terms
of the public and private keys being in posses-
sion of the owner, and such account address –
the hexadecimal Ethereum id – can be shared
with third parties e.g., in anticipation of a fu-
ture transfer to it. Such an account would not
have a serial number yet if it never received to-
kens but it could be manually registered to ob-
tain one. Serial numbers are spaced by an inter-
val of 17 to reduce the likeliness of typos result-
ing into valid numbers.

Name
Accounts can be labeled with a unique name.
Transactions can be sent to this name. A name
cannot be changed once set, and once used, it
can never be used by another account.

Account Abstraction
An account can be set to allow multiple keys to
individually act like account owners. An addi-
tional key is first set to anticipate this role for
an account, whose owner then shares access to
it using the account’s main key. The added key
loses access to its original account, but it can
unshare to revert back to normal operation, and
the account’s original key can be used to revoke
the added key’s role. An added key can coshare
its power with a third key and subsequent un-
share or revoke calls on the former do not cas-
cade to the latter. An unlimited number of keys
can share access to an account. The abstraction
preserves compatibility with ERC20. Added keys
can be used for all calls that require a signature,
including direct transactions.

Multi-Signature
The account owner can authorize keys and set
the number of signatures demanded for transac-
tions. Multi-signatures are enforced only for di-
rect transfers. The account owner must sign
last. Signers can collectively remove a key.

Avatar
An account can be marked by an avatar image
URL, which can be changed at any time.

Email
The owner can publish an email address to an
account to be notified of relevant events. The
entry is publicly readable and can be set and
changed by the account owner at any time.

Subscribe & Feed
Accounts can subscribe to another account that
they would like to hear posts from, e.g., via their
email addresses.

Message
Accounts can receive short messages, which are
stored in an append-only, otherwise stateless
message-queue. A front-end can supply the mes-
sages to an account owner, keeping track of
read-state and responses. Messages are public.

INTERACTION

Approval
The token features ERC20 ibid. 64 approval, which
allows for the definition of an amount of tokens
that can be transferred out by another key.

Permit
ERC2612 ibid. 64 permits can grant approvals so
that accounts can be used that hold no Ether.

Commitment
Commitments resemble ERC20 approvals, but
the designated receiver cannot actively pull the
tokens to their account. The commitment is
made by an account owner over a specified
amount to a specified receiver for a specified
time. When a commitment is made, no tokens
are transferred yet, but the committed amount
is blocked: it cannot be transferred out to a
third party, neither by direct transfer nor by
other mechanisms. The receiver can release the
commitment and it can time out. A commit-
ment is fulfilled by transferring the committed
amount to the designated receiver. An account
can have only one commitment at a time and
must be unlocked. The rules as described can be
enhanced by the use of gates.ibid. 66

signatures pg. 32

signatures pg. 32

signatures pg. 33

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

signatures pg. 32

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 13 www.lexon.org

Promise
A transfer to another account can be promised.
As with commitments, no tokens are transferred
at the time. The giver of the promise does not
approve of nor commit to a transfer. Promises
are a separate, weaker, and simpler concept that
can be useful especially in connection with
gates.ibid. 66 Promises do not have to be covered
at the time they are made and no amount is
blocked. A promise is made for a specific
amount, to a specific receiver, who can forgive
it. They cannot be changed by the giver and do
not time out. Any transfer from the giver to the
receiver reduces the remaining amount. Multi-
ple promises can be made for one account to
multiple receivers. The rules as described can be
extended by gates.

Cheques
An account owner can make an arbitrary num-
ber into a cheque. Writing a cheque blocks a
given amount of tokens that is not available for
transfers or any other purpose until the cheque
is deposited. A cheque can be deposited only by
the designated receiver, by providing the cheque
number. Only an unlocked account can create
checks. It cannot be switched to engaged until
all its cheques are deposited. A cheque number
can be any number but it can only be used once
per issuing account. An unlimited number of
cheques can be created, also to the same receiv-
ers, and be outstanding at the same time. Be-
cause the receiver is associated with the cheque
and cannot be changed, the cheque number does
not have to be a secret.

Escrow
An account holder can set a price in Ether and
an amount of tokens to be sold for that price.
Any account can act as buyer and will receive
the set amount of tokens on sending the set
amount of Ether. The offer can be changed or
taken back at any time. The sale will fail if there
are not enough tokens in the seller’s account.

An account can also fix an amount of to-
kens, an amount of Ether, a specific buyer ac-
count, and a deadline. The buyer will receive the
amount of tokens on sending the set amount of
Ether before the deadline, provided that the
supply of tokens in the selling account suffices.

Burning
Tokens can be burned, with proof, so they could
be re-minted in controlled fashion on another
chain. An account must be unlocked to burn.

Reversibility
This mechanism allows for transfers that can be
reversed, at the discretion of the owner of a des-
ignated forum key, e.g., a court, arbitration ser-
vice, notary or neutral third party. The trans-
ferred amount is locked-in, on the receiver’s ac-
count, until it is reversed, the set time has
elapsed, the sender makes the transfer final, or
it is sent back to the sender by the receiver.

The owner of an account can accede to an-
other account, the grantee, a specific time win-
dow and a public key, called forum, that can be
used to trigger the reversal of any transfers to
the acceding account from the grantee, from that
point on. Any such transfer is marked as pend-
ing at the receiving account and cannot be used
in any way, except sent back in whole or in part.
The pending amount is initially zero. It grows
with every transfer from the grantee and is re-
duced by any transfer back to the grantee. After
the time out, the transfers are final and not
pending anymore. The reversal can be triggered
by the forum but not by the grantee. It transfers
all pending tokens back to the grantee. The
timeout can be set to any length, including in-
definite. The grantee can end the pending state
unilaterally. Pending funds count as unlocked.

Deeds
An account can be linked to one or multiple vir-
tual assets by URL or hash. The assets are trans-
ferrable to other accounts following the ERC721
NFT standard. Methods of the same name and
arity lose their ERC20 binding when an account
is used for deeds but the tokens in the account
remain accessible. The combination of fungible
and non-fungible token functionality provides
accessibility and extension features such as se-
rials, names, abstraction, reversibility, messag-
ing and gates to both use cases for every ac-
count, and enables DAOs.

DAO
An account can be shared by members who
make a token contribution when joining and re-
ceive a pro rata share of the account’s then-cur-
rent token balance when leaving. The account
can be set to be decentralized to disable direct
access to it by the original owner. It is then not
possible to initiate standard transfers. Only
leaving members can receive tokens out of de-
centralized accounts, unless gates ibid. 66 are em-
ployed. There are no functionalities beyond the
basic mechanism of joining and leaving but
gates can be used to add arbitrary rules, e.g.,
complex governance or asset handling.

signatures pg. 33

signatures pg. 33 signatures pg. 33

signatures pg. 33

signatures pg. 33

signatures pg. 33

signatures pg. 33

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 14 www.lexon.org

EXTENSIBILITY

Gates
Gates are a new concept that upgrade an ac-
count to a smart account that reacts directly to
events.74 A gate is a voluntary, per-account re-
striction on the use of the account’s tokens.75 It
can be used to express obligations, which smart
contracts generally cannot. Technically, gates
are separate, re-usable callback function collec-
tions, tied-in through special event hooks in
basic token functions, like transfers.

Figure 3 – two-step gate transfer

The trigger ❶	in Figure 3 can be an out-
of-band fact, communicated by an oracle; a spe-
cial event like a promise or a commitment76 be-
ing made or changed; or an incoming transfer.
The gate can be programmed to intervene in
any of these cases, e.g., to stop the transaction
or to make a token transfer to a third account.77

The gate restrictions allow others to trust
that a smart account’s owner must honor the
obligation expressed in its rules. Like with the
general blockchain paradigm, the power of gates
lies in the unbreakable promise they allow to be
made. Some uses of gates are trustless, e.g., in
connection with pending commitments or re-
versible transfers. Other useful setups start out
trustfully, relying on out-of-band incentives that
make sure that a smart account – and thus its
gate – is actually used, and not sidestepped to
escape the gate’s restrictions. Such scenarios fit
business settings where there exists some trust
– if in the judicial system as backstop; and for
friendly interactions that use tokens as a unit of

74 Event handling is a staple paradigm of system pro-

gramming that facilitates the composability of sys-
tems. It allows for different parts of a system to be
created and deployed at different times, by different
parties, without knowledge of each other. Gates are
essentially stateful event handlers, expanding on
Ethereum’s original trajectory of adding state to
Bitcoin’s stateless transactions.

75 This is different from prior proposals that extended
the functionality of all tokens of a specific denomina-
tion equally. Cf. operators and hooks of EIP 777,

account only,ibid. 54 where there is no gain in
open, traceable sabotage of the bookkeeping.

A gate is like a smart contract built into an
account (cf. the cog icon in Figure 3), instead of
existing ‘between’ accounts (Figure 4). It is
more efficient than the typical smart contract
flow, where a transfer often takes three steps (❶	
pay in, ❷ trigger, ❸	pay out), and tokens get
locked in at the smart contract’s internal escrow
between step ❶ and ❷, i.e., before anything
really happens:

Figure 4 – common three-step smart contract transfer

Because a gate shifts the logic into the ac-
count, one step is eliminated. There is no pre-
paratory step ❶ for the rules to kick in,78 and
the tokens are not locked-in while the transac-
tion is pending.

Gates tie into the described mechanisms of
approval, commitment, reversibility, promises,
and deeds79 and can extend them. They basi-
cally provide functions that are called at the
time of specific events, for example, when a
transfer comes in, a promise is forgiven, or a
transfer reversed. They can consist of a single
one-line function or be a complex, stateful ob-
ject. Gates have temporary access to incoming
tokens.

A gate can provide its rules to an unlimited
number of accounts. It is set or prepared by an
account owner, who elects the specific gate to
become the unshakeable extension to the token
functionality of the account. The owner can also
assign a keeper of the gate. It is then activated
by the keeper, confirming the settings, and

https://eips.ethereum.org/EIPS/eip-777. Such efforts
focused on allowing token creators to augment existing
protocols at the time of the creation of a new token,
affecting all tokens and accounts of the implementa-
tion. Gates, however, allow individual account owners
to accept voluntary restrictions – the very nature of
contracts – for one account only, at any time.

76 See Interaction, pg. 12.
77 See Gate Interface, pg. 34.
78 There is a preparational step to set up the gate, once.
79 See Interaction, pg. 12.

signatures pg. 34

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 15 www.lexon.org

paying the fee if there is any. An account can
only be gated with consent of both account
owner and gate keeper, if there is one.

Whenever a transfer is initiated from the
gated account, the gate smart contract is called
first with the information from whom to whom
and on what amount the transfer is to be. The
gate contract can then veto the transaction.
When a gated account receives funds, the gate
is called and can cancel the transaction or draw
part or all of the received amount from the
gated account. An internal locking mechanism
prevents re-entrance circularity.

Gates can be programmed to be perma-
nent, or to close according to specified rules.
The keeper, or the gate itself, can close a gate
and thus restore a smart account to its default,
non-smart state. The keeper can also update pa-
rameters of the gate contract, if there are any.
What parameters control a gate depends on its
design. The owner of a smart account will have
had insight into it before accepting the gate.
Both the owner of a smart account and its gate
keeper can retrieve information about the gate’s
status, which can be of any complexity.

Gates can be re-used, which allows for
standard implementations to emerge. Gates in-
crease the cost of a transfer, depending on the
intricacy of their event handling.

Decentralization of Logic
Conceptually, gates are a more decentralized ad-
ministration of logic than smart contracts, with
the expected advantages. The relationship to-
pology of a complex smart contract typically
has a star shape, revealing its centralizing effect.
This is what graphical blockchain browsers of-
ten show:80

Figure 5 – Virtual centralization by smart contracts

In contrast, the gate mechanism, being per-
account, replaces this pattern with a web of

80 The author developed a graphical Ethereum transac-

tion browser for IBM where these shapes emerged as
the prevalent patterns of transactions.

direct connections, introducing intricate peer-
to-peer interaction between accounts:

Figure 6 – Decentralization through gates

This is more robust and better suited for
growth than a star shape, as it allows for incre-
mental progress in the development of relation-
ships; rather than requiring the limiting, holistic
and even dictatorial approach that characterizes
the design of bulky smart contracts,ibid. 13 Each
account can be fitted with custom logic inde-
pendently and the cascade of algorithms that
interact to implement complex business logic
can be built up in successive steps. Notably, the
individual building blocks are malleable – cor-
rectible and improvable – with authority to
change accruing to exactly those parties who
would stand to lose from a change. Even the
most complex governance mechanisms could but
approximate this modularity for a central smart
contract.

Dynamic Stacking of Logic
A main advantage of gates is the more dynamic
flow: tokens need not be moved out first, and
the application of rules across participating ac-
counts can be stacked,81 for high complexity.
The cascading transaction cost can be shared.

Figure 7 – Loosely stacked gates
The interaction between the account-spe-

cific rules is ad-hoc, for any specific transaction.

81 A trustless custody mechanism prevents spill-over ef-
fects between gates, namely that a deeper gate could
veto (revert) a transfer for everyone involved.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 16 www.lexon.org

The two gates that may be involved are inde-
pendent and oblivious of each other. In sum
though, they form a loosely coupled emergent
system. Such dynamic interaction was an origi-
nal hope for blockchain smart contracts. It is
being held back by the lack of API definitions,
now addressed by the community-driven EIP
process that does not aspire to be fast. Gates
are magnitudes simpler, individual decisions.
They work without intra-contract standards be-
cause their tie-in is not between accounts. Gates
may affect each other but need not talk to each
other.
Proofing Programmable Money
Gates demonstrate a mechanism to securely
track hierarchic channels of supply chain cash
flow 82 to speed up disbursement and reduce
risks of trade financing, or to implement com-
plex bookkeeping, e.g., for staggered media roy-
alties. An ultimate employer does not have to
lock-in the entire budget of a contract into a
smart contract but merely commit to be using
a specific account to trigger a pre-agreed, un-
stoppable distribution mechanism. After that
first trigger, the transfer mechanism can be
trustless. If the ultimate employer desires that
subcontractors – who do the actual work – get
paid, incentives are aligned.

Gates thus demonstrate the possibility of
programmable money, as proposed at the Cleve-
land Federal Reserve in 2018:83 For a specific
budget to reliably and continuously be subject
to specific rules, a system architecture must pro-
vide for the programmability of individual ac-
counts. This enables the metaphor of the funds
themselves being programmable. Neither tradi-
tional blockchain smart contracts nor tradi-
tional automated banking mechanisms are suffi-
ciently subtle for this purpose. A shortfall in-
flicts significant economic cost, most commonly
in the form of late or denied payment that pun-
ishes the productive party to a contract. To ad-
dress this well-researched power abuse, some of
the relevant logic must be anchored in the layer
of the code that implements the token,84 rather
than at the higher layer of the contract logic.

82 See the appendix, Programmable Money, pg. 30.
83 The essential example for programmable money is

given in a supply chain where the main contractor’s
funds are restricted to distribution to subcontractors
only, without possibility to unduly withhold or divert.
See appendix, Programmable Money, pg. 30.

84 A comparable context can be found in locking mech-
anisms of databases. It is impossible to implement
protections for data integrity during transactions on

SALE

Purchase
The token can be purchased for Ether at
https://lexon.org/tokens or by sending Ether to
0xfdE4fC26B3D15d50C0fA2822cA01860a64f4E73a,
from a whitelisted address. The smart contract at
this location returns the purchased amount of
Lexon tokens at the correct total price. Sending
Ether from a whitelisted wallet to this address,
results in the wallet receiving the Lexon tokens.

Promotion
First-time visitors have 10 compilations free. A
purchase of tokens is offered automatically after
the 10th compiler run. Professors and students
of law, computer sciences, linguistics, political
sciences, philosophy, and related fields can apply
for a drop at https://lexon.org/faculty.

Use
Accounts are engaged 85 by default and can im-
mediately be used with the compiler but trans-
ferred out only after 30 days; except when the
first transfer in came from an unlocked account.

Holding
Tokens can be managed with ERC20-compatible
Ethereum wallets. Tokens can be used with the
compiler even when air-gapped, in cold storage,
or sealed 86 because no transactions and no use
of keys are required for compile runs.

Transacting
Tokens can be transferred using ERC20-
compatible Ethereum wallets. They can be pas-
sively transferred without owning any Ether, via
ERC2612-permits.87 Other specific token mecha-
nisms described above88 – e.g., ERC20 approval
– can move tokens, even if in cold storage, but
not when engaged85 and sealed.86

Cap
The supply is capped at 200 million tokens. The
sale can be paused, effecting a temporary soft
cap. The first soft cap will be at around 10M
tokens issued to balance compiler capacity.

the application level if the data storage layer does not
provide the required basic, atomic features. E.g., lock-
ing to prevent near-parallel changes from overwriting
each other in a concurrent system.

85 See Engage, pg. 11.
86 See Sealing, pg. 12.
87 See Permit, pg. 12.
88 See Interaction, pg. 12.

signature pg. 33

signatures pg. 32

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 17 www.lexon.org

Price
The price for Lexon Programmable Tokens in-
creases with the amount of tokens issued.89 This
serves as load protection for the online compiler.

Figure 8 – Token sale price based on tokens issued

Current Price
The current price, in Ether, can be learned at
https://lexon.org/tokens. The page lists the
price for the next token sold and allows the que-
rying of the total price for a planned purchase,
e.g., the amount of tokens one would receive for
0.01 Ether.

Price Formula
The token price is calculated by a formula
p = (issued – k) / m ± offset. This has a loga-
rithmic effect in terms of purchasing power: The
increase is steepest in the beginning, relative to
Ether spent, because the same amount of Ether
buys progressively fewer tokens, which drives
the price progressively to a lesser degree. Damp-
ening the effect, the initial price increase rate
(Figure 8, a.) grows steeper after 100M tokens
have been issued (b.) and again after 180M (c.).
For the respective partial curves, a., b., c., the
formulae are:

 PRICE POINT FORMULA

 I S SUED PRICE CURVE

< 100M issued
10B

a.

≥ 100M issued – 80M
9B

b.

≥ 180M issued – 160M
480M

c.

Table 1 – Token price formula

The offset serves as protection against im-
balances from outside the sales mechanism.

89 Drops and locked-in sales can be exempted.

Price Points
Some resulting price points are as follows. E.g.,
at exactly 10 million tokens issued, the price for
the next token is 0.001 Ether:

 SELECT PRICE POINTS

 I S SUED PRICE

 1M 0.0001 Eth

 10M 0.001 Eth

 100M 0.01 Eth

 200M 0.1 Eth

Table 2 – Token price points

Effective Rebate
For an individual purchase, ten price points are
established to calculate the total price. This ef-
fects a rebate, the steeper the higher the amount
purchased. It will therefore at any point be more
economic to buy in one transaction, instead of
spreading a purchase across multiple transac-
tions.

Figure 9 – Effective rebate (schematic)

Sponsoring
Schools can sponsor their students, supplying
students’ accounts with tokens that can be used
for the online compiler but not transferred in
any way. The sponsor can eventually reward se-
lect receivers by giving them full control over
their tokens. Or, where not, collect the tokens
back to the sponsoring account, where they also
revert back to being normal tokens. A receiver
can dropout at any time and send all tokens back
to the sponsor, upon which the sponsored ac-
count becomes a normal account again. Spon-
soring can be initiated from any account at
https://lexon.org/sponsoring. For the initial
supply, see Promotion, pg. 16.

signature pg. 33

signatures pg. 33

89

89

89

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 18 www.lexon.org

CONCLUSION

Lexon’s real-world impact is broad and sus-
tained. It unites developments in computational
law, cryptography, computer sciences, AI90 and
linguistics to achieve long-sought milestones in
each field: digital contract analysis , le-
gal ly enforceable smart contracts, sel f-
documenting code, deterministic language
processing, and an executable human lan-
guage. The resulting accessibi l ity and
agency drive a productivity increase set to
transform commerce, finance, and governance.
It opens new ways even to think about some of
the more intractable-looking challenges of our
times, and solve them.

Lexon’s contribution is unique, a result of
original research. It starts with compiler tech-
nology, built on industry standards for scalabil-
ity and robustness, to enable a language design
that achieves perfect readabil ity, and a
bridge between law and coding. Accordingly,
Lexon has been called the “Holy Grail of Com-
putational Law” and the co-inventor of the AI
language Prolog, Robert Kowalski, named
Lexon among the “next biggest changes.” 91

Lexon addresses a burning platform issue
considered an almost hopeless cause: to lower
the cost of access to justice, to the level
needed to heal our societies. It will level the
playing field in business, protecting creativity
and merit against the deep pockets of incum-
bents, and regulatory capture. Because Lexon is
up to a million times cheaper, and a billion
times faster,92 the difference it makes is a qual-
itative one. Over time, it will fundamentally
change how business, law and politics work.

But Lexon can be used to write law, too.
An official proposal for U.C.C. model law ibid. 25
has been presented to the reform committee ap-
pointed by the American Law Institute. Even-
tually, Lexon will be the language that the real
Robotic Laws 93 will be articulated in, to
embed reliable and unambiguous limitations
into autonomous machines. This will be plain-
text code, written by elected lawmakers,
approved in the democratic process.

90 Machine learning is complementary to Lexon, its romp

the perfect fit for the preparatory phase of writing.
91Prof. Robert Kowalski, 2021 FutureLaw, Stanford –

Together with Blawx and Kowalski’s Logical English:
https://law.stanford.edu/press/new-codex-prize-
awarded-to-computational-law-pioneers-during-9th-
annual-codex-futurelaw-conference/ – regarding the

Lexon even works purely as a lan-
guage, entirely ‘off-machine.’ Because of its
readability and unambiguity, lawyers call it a
new form of legalese. With the Lexon com-
piler as a sui generis test tool.

Being ‘human-readable,’ Lexon is a cata-
lyst for trustless technology. Its digital con-
tracts are at the same time legally enforceable
agreements and unbreakable blockchain smart
contracts. This solves the question whether code
is law. It makes contract programs – like those
on blockchains – admissible in court and will
close the digital divide between the legal profes-
sion and the numerous black box automations
that ‘administer justice’ today.

Informed by real-world scenarios, the
Lexon Programmable Tokens improve the
expressiveness ibid. 6 8 of digital contracts and
significantly increase the usefulness of tokens for
business, providing missing features like re-
versibi l ity and modularity – options whose
lack has been identified as a major inhibitor of
blockchain utilization in traditional commerce,
and which must be implemented at the lowest
technical layer – ‘inside’ the token.

The token’s event-handling framework up-
grades Ethereum’s single-thread object-oriented
approach with a state-of-the-art, composable
paradigm that emphasizes the role of accounts
as the actual objects of the system. It introduces
a new, modular growth model on the sys-
tem level, allowing for more powerful digital
contracts that can interact more flexibly, pre-
paring the ground for larger patterns of interac-
tivity on Ethereum.

Smart accounts enable the metaphor of
programmable money,94 as well as a more
distributed logical topology of interaction
between blockchain accounts, overcoming the
bottlenecking ‘star’ pattern of smart contracts.

Lexon’s far-reaching consequence is a
merging of the legal and the IT space into a
perplexing new reality that may appear unex-
pected but has been envisioned, and worked to-
wards, from the beginning of the computer sci-
ences.95 Its transparency and ease will unleash
enormous power for good, pulling law back to a
semblance of equal justice – a notion as urgently

differences between Lexon and Logical English, see
https://lexon.org#logical-english

92 These are not exaggerations, see the Lexon book, ibid.
93 See appx. Robotic Laws, pg. 31.
94 See appx. Programmable Money, pg. 30.
95 Leibniz’ first idea of what should be programmed – in

1666 – was a thousand years old, Roman contract law.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 19 www.lexon.org

necessary as it sounds naïve – and drive the
overdue digital reform of democratic govern-
ance, strengthening participation and represen-
tation in the way that many intuit should be
possible with present-day means. For fairer
global commerce, Lexon will help to provide
new rails that are safe, low-cost, and transpar-
ent for every participant – in the course of
which, stopping the descent of programming
into a gatekeeping, dark art of the powerful.

An economic and social quantum leap is
what the world needs, according to the assess-
ment of the secretary-general of the UN:

“Something is fundamentally wrong with
our economic and financial system,” António
Guterres told the general assembly,96 reporting
increasing poverty, hunger and burdens of debt.

“It needs a radical transformation.”
The trustless technology for commerce,

law, and governance that Lexon enables can
provide the make-over the secretary-general
calls for. This is no co-incidence but the result
of focused research that has been going on since
the 1980s, not only into how the power of com-
puters can be used for good, but into what could
be done to counter the rampant abuse of digital
innovation in all walks of life.97 Lexon brings to-
gether deep tech that emerged from these pas-
sionate efforts and makes it accessible.

But importantly, Lexon is backwards-com-
patible: As it is difficult to see how the benefi-
ciaries of the status quo will be incentivized to
help with meaningful change, the most powerful
transformational aspect of technology is that it
just works. Lexon can drive change, by incre-
mental improvements, because – looping back to
its very essence – it is compatible with what ex-
ists: viz., readable by judges. It was made to
strengthen our most powerful interface,
lurid cyborg dreams aside: language.

The key to creating Lexon programs is the
Lexon compiler. It can be used online with-
out installation at https://lexon.org/compiler.

Payment for its use is by subscription, ex-
pressed in Lexon Programmable Tokens
hedl. The tokens can be purchased at
https://lexon.org/tokens.

96 A. Guterres, Briefing to the General Assembly on Pri-

orities for 2023 – https://www.un.org/sg/en/con-
tent/sg/speeches/2023-02-06/secretary-generals-brief-
ing-the-general-assembly-priorities-for-2023

97 See the Lexon book, ibid., Appendix II, Blockchains
& Smart Contracts on the history of the Cypherpunks.

DISCLAIMERS

The information provided in this paper is
strictly for educational purposes. There are no
warranties, express or implied. Any use of this
information is at your own risk. The author does
not assume and hereby disclaims any liability to
any party for any loss, damage, or disruption.
See https://lexon.org/disclaimer.

Lexon is not an all-purpose human lan-
guage. An unambiguous language is desirable
for programming and lawmaking but less so for
other purposes of human communication.98

Lexon compiler output must be audited be-
fore using it in production. There is no warranty
for fitness for any purpose, nor any other war-
ranty, for the compiler output or the token func-
tionalities. See the license information at
https://lexon.org/license.

Secret key usage examples in this paper are
simplified for educational purposes. Do not cre-
ate or store keys in production as shown in the
examples.99

The described tokens are not for invest-
ment; they may not work as a store of value.
There is no secondary market for the tokens,
and none is planned. The token is not bought
back by the issuer. The token does not represent
a share in a company or IP. It does not make
eligible for any payment.

LICENSE

There is no claim to the products of the Lexon
compiler. Any text you write in Lexon and
anything you create using the Lexon compiler is
yours or governed by arrangements you made.

The text and graphics of this document,
including its appendices, are licensed under Cre-
ative Commons Attribution-ShareAlike 4.0 In-
ternational (CC BY-SA 4.0); 100 sources and
grammar under AGPL3.101 Basically, you can
quote, share or modify this document but must
give credit and allow the same.	

98 Cf. appx. The Principles of Newspeak in G. Orwell,
1949, Nineteen-Eighty-Four.

99 Key management is a field in its own right. Lexon, per
se, works completely without keys.

100 https://creativecommons.org/licenses/by-sa/4.0/
101 https://www.gnu.org/licenses/agpl-3.0-standalone.html

© 2023 Henning Diedrich Text: CC BY-SA 4.0, sources: AGPL3. www.lexon.org

APPENDIX

EXAMPLE COMPILATION

For the reader’s convenience, the two boxes on this page are a repeat from pages 2 and 5.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints the Payee, appoints the Arbiter, and also fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves, and afterwards pay the remainder of the escrow
to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves, and afterwards return the remainder of the
escrow to the Payer.

Source 10 – Lexon code example (escrow)

Using the barebones option, the Lexon compiler translates the above Lexon code into this Javascript:

module.exports = class Escrow {

 constructor(payer, amount, payee, arbiter, fee) {
 this.payer = payer;
 this.payee = payee;
 this.arbiter = arbiter;
 this.amount = amount;
 this.fee = fee;
 this._pay(this.payer, 'escrow', this.amount);
 }

 pay_out(caller) {
 if(caller == this.arbiter) {
 this._pay('escrow', this.arbiter, this.fee);
 this._pay('escrow', this.payee, this.amount);
 } else {
 return 'not permitted.';
 }
 }

 pay_back(caller) {
 if(caller == this.arbiter) {
 this._pay('escrow', this.arbiter, this.fee);
 this._pay('escrow', this.payer, this.amount);
 } else {
 return 'not permitted.';
 }
 }

 _pay(from, to, amount) {
 console.log(`➠ system message: pay ${amount} from ${from} to ${to}.`);
 }
}

Source 11 – Lexon compilation example (barebones)

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 21 www.lexon.org

Using the all auxiliaries option, the Lexon compiler translates the Lexon code from the previous page
into the following Javascript program. Its core functionality is identical to the barebones version, but it
has additional features as described in Trustless Contracting from pg. 7. In part, to make up for the
lack of trustlessness that comes for free for a program running on a blockchain.

Instructions assume that the result was saved into file escrow.jsx.

/* Lexon-generated Javascript

 code: Escrow

 file: escrow.lex

 compiler: lexon 0.3 alpha 85

 grammar: 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes

 backend: javascript 0.3.82

 target: node 14.1+

 parameters: --javascript --all-auxiliaries

 INSTRUCTIONS FOR USE:

 Execute this program using node. Replace the <parameters> with literal values.

 Running this program as-is requires beginners programmer knowledge. This phase is
 yet not covered by lexon's mission to make code readable and useful for non-coders.
 In the future, an interface will be generated to complete this last mile. However,
 embedding this code into a self-explanatory user interface is a straight forward
 task for a full-stack programmer.

 Note that the instructions below reflect your lexon code as well as the parameters
 used during compilation of the code: different functions and parameters will result
 from different input. Some functions are 'built-in' but only appear when needed as
 per compiled-in features – a list of which is available with lexon -h. The functions
 are not given in a specific order of execution but as listed in the lexon source.

 These node modules have to be installed once:

 $ npm install serialize-javascript
 $ npm install tar
 $ npm install nodemailer
 $ npm install prompt-sync

 Parameters below are marked with double angle brackets << >> for the respective
 required caller. If the role is defined earlier, it can only be performed by this
 person. (But remember that this entire setup is trustful: anyone can manipulate
 anything about this contract. Though they cannot sign it or change the signed log.)
 If the role is not defined earlier, the call makes the role be assigned to the
 person named for the call. Some functions can be called without naming a caller.
 Some clauses of the original lexon source will not appear below. Namely, those
 that have no permission phrase, wherefore they are regarded as internal.

 The main contract system is initialized by loading the module and instantiating:

 $ node
 > contract = require("./escrow.jsx");
 > escrow = new contract(<<payer>>, <amount>, <payee>, <arbiter>, <fee>);

 Remember to reset node's module cache each time you edit and recompile your code:

 > delete require.cache[require.resolve('./escrow.jsx')];

 These are the state progress functions that allow to interact with the contract:

 > escrow.pay_out(<<arbiter>>)
 > escrow.pay_back(<<arbiter>>)

 state changes of the contract can be listed, e.g. actions performed by
 a party to it, or agents who are assigned privileges. In case hash chains
 or signatures are used, they are visible in this log. The log is stored in
 in the file 'log'.

 > escrow.history()

 The complete contract state can be saved to disk and re-loaded at a
 later point in time. This serves to continue work after stopping and

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 22 www.lexon.org

 restarting node; or to send the entire contract system and its current
 state - which can include hashes and signatures - to another party,
 who may perform the next steps.

 > escrow.persist()
 > escrow.load()

 The contract code, state and log can be bundled into one file to exchange
 or archive it:

 > escrow.bundle()
 > escrow.unbundle()

 The contract code, state and log can be sent to a counterparty. This
 requires configuring an email account in the file 'config'.

 > escrow.send()

 Keys for signing log entries are expected on-file, by default named after
 the actor, with the extension .key. For demo purposes, key files can be
 created using this utility function:

 > escrow.create_key(name, passphrase)
*/

var fs = require('fs');
var crypto = require('crypto');
var serialize = require('serialize-javascript');
var prompt = require('prompt-sync')();
var tar = require('tar');
var nodemailer = require('nodemailer');
var last_caller;
var last_passphrase;

/**
 **
 ** Main Escrow contract system
 **
 **/

module.exports = class Escrow {

 constructor(payer, amount, payee, arbiter, fee) {

 let main = this;

 /* object members: skip for restoring serialized object */
 if(typeof payer !== 'undefined') {
 this._escrow = 0;
 this.payer = payer;
 this.payee = payee;
 this.arbiter = arbiter;
 this.amount = amount;
 this.fee = fee;
 this.logname = 'log';

 /* start log - overwrites previous by same name */
 fs.writeFileSync(this.logname, "Lexon log " + (new Date).toLocaleString('en-US') +
"\n", ()=>{});
 this._pay(caller, this.payer, 'escrow', this.amount);
 this.log(payer, "✓ Payee appointed");
 this.log(payer, "✓ Arbiter appointed");
 this.log(payer, "✓ Fee fixed");
 }

 /* restore object from file - must be below class definition */
 if(typeof payer === 'undefined') {
 console.log("> restore from file 'state'");
 var data = fs.readFileSync('state', ()=>{});
 var live = eval('(' + data + ')');
 Object.assign(this, live);
 }
 }

 /* Pay Out clause */
 pay_out(caller) {
 if(caller == this.arbiter) {
 this._pay(caller, 'escrow', this.arbiter, this.fee);
 this._pay(caller, 'escrow', this.payee, this._escrow);
 } else {
 return 'not permitted.';
 }
 return 'done.';

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 23 www.lexon.org

 }

 /* Pay Back clause */
 pay_back(caller) {
 if(caller == this.arbiter) {
 this._pay(caller, 'escrow', this.arbiter, this.fee);
 this._pay(caller, 'escrow', this.payer, this._escrow);
 } else {
 return 'not permitted.';
 }
 return 'done.';
 }

 /* built-in convenience function to view state change log. */
 history() {
 fs.readFile(this.logname, (e,d)=>{console.log(d.toString())});
 }

 /* built-in serialization and storage of entire contract system state. */
 persist() {
 console.log('> persisting');
 var data = serialize(this, {space: 4});
 fs.writeFileSync('state', data, ()=>{});
 }

 /* re-instate entire contract system from serialized file store */
 static load() {
 return new Escrow();
 }

 /* built-in tar-balling of code, log and state. */
 bundle() {
 console.log('> bundling into contract.tgz');
 tar.create({gzip:true, file:'contract.tgz'},
 ['escrow.lex', 'escrow.jsx', 'state', 'log', 'INSTRUCTIONS.TXT']);
 }

 /* built-in untar-balling of code, log and state. */
 static unbundle() {
 console.log('> unbundling contract.tgz');
 tar.extract('contract.tgz');
 }

 /* built-in email sending of code, log and state. */
 send() {

 this.persist();
 this.bundle();

 console.log('> sending via email');
 var receiver = prompt('enter receiver address: ');

 var config = fs.readFileSync('config', ()=>{});
 var email = eval('(' + config + ')').email;
 console.log(email);

 var transporter = nodemailer.createTransport({
 service: email.service,
 auth: { user: email.user, pass: email.pass }});

 var mailOptions = {
 from: email.from,
 to: receiver,
 subject: email.subject,
 text: email.text,
 attachments: { path: './contract.tgz', contentType: 'application/gzip' }};

 transporter.sendMail(mailOptions, function(error, info){
 if (error) {
 console.log(error);
 } else {
 console.log('> email sent: ' + info.response); }});
 }

 /* built-in logging of state changes. */
 log(caller, msg) {
 console.log(msg);
 let stamp = (new Date()).toLocaleString('en-US');
 var entry = `⌽ ${stamp} ✦ ${caller} ${msg}`;
 var passphrase = this.sync_passphrase(caller);
 var pem = fs.readFileSync(caller + '.key');
 var key = pem.toString('ascii');
 var sign = crypto.createSign('RSA-SHA256');
 sign.update(entry);

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 24 www.lexon.org

 var sig = sign.sign({ key: key, passphrase: passphrase }, 'hex');
 fs.appendFileSync(this.logname, `${entry} ❈ ${sig}\n`);
 let pay = fs.readFileSync(this.logname);
 let hash = crypto.createHash('sha256').update(pay);
 fs.appendFileSync(this.logname, '⧉ ' + hash.digest('hex').substr(0, 12) + " ");
 }

 /* built-in password query for private key file, with cache. */
 sync_passphrase(caller) {
 if(!caller) process.exit('no caller information');
 if(caller == last_caller) return last_passphrase;
 last_caller = caller;
 return last_passphrase = prompt('enter pass phrase for ' + caller + ': ', {echo: ''});
 }

 /* built-in convenience function to create keys for users. */
 static create_key(name, passphrase) {
 const { publicKey, privateKey } =
 crypto.generateKeyPairSync('rsa',
 { modulusLength: 2048,
 publicKeyEncoding: { type: 'spki', format: 'pem' },
 privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc',
 passphrase: passphrase }});

 fs.writeFileSync(name+'.key', privateKey);
 fs.writeFileSync(name+'.pub', publicKey);
 return true;
 }

 /* built-in pay message */
 _pay(caller, from, to, amount) {
 this.log(caller, `➠ system message: pay ${amount} from ${from} to ${to}.`);
 if(from == 'escrow') main._escrow -= amount;
 if(to == 'escrow') main._escrow += amount;
 }
}

/* end */

Source 12 – Lexon compilation example (Javascript, all auxiliaries)

DEPLOYING TO ETHEREUM

Deployment to Ethereum goerli:
• Obtain an <API KEY> from https://www.alchemy.com/.
• Receive testnet Ether from https://goerlifaucet.com to the address of <PRIVATE KEY>.
• Solidity code is expected in the clipboard on Mac.
• Alternatively, use ./lexon --sol -o contracts/Escrow.sol escrow.lex

Hardhat is used and (public!) accounts 0 and 1 of the hardhat node are given as parameters to deploy().

$ mkdir escrow; cd escrow
$ npm install --save-dev hardhat @nomicfoundation/hardhat-toolbox
$ mkdir contracts; pbpaste > contracts/Escrow.sol
$ echo 'require("@nomicfoundation/hardhat-toolbox");
 module.exports = { solidity: "0.8.17", networks: { goerli: {
 url: "https://eth-goerli.g.alchemy.com/v2/<API KEY>",
 accounts: ["<PRIVATE KEY>"] } } };' > hardhat.config.js
$ mkdir scripts; echo 'async function main() {
 const Escrow = await hre.ethers.getContractFactory("Escrow");
 const escrow = await Escrow.deploy("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266",
 "0x70997970C51812dc3A010C7d01b50e0d17dc79C8", 10n**18n); await escrow.deployed();
 console.log(`deployed to ${escrow.address}`); } main();' > scripts/deploy.js
$ npx hardhat --network goerli run scripts/deploy.js

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 25 www.lexon.org

EXAMPLE INTERACTION

The live interaction with Javascript code created from a Lexon text102 can look like follows. Note that
the manual calls of the functions in the terminal is intended to demonstrate how these functions can be
used by a frontend. It is also helpful for testing and research but not a production scenario.

• Start node and instantiate the Financing Statement.

$ node
>> contract = require("./statement.jsx");
[Function: UCCFinancingStatement]

• Instantiate the Financing Statement. Roles are given generic names in this example, FILER for the
filer etc. The names are relevant subsequently for the role to identify itself when initiating an action.
The name is then used to find the private key file that is used to sign log entries.

> statement = new contract("FILER", "OFFICE", "DEBTOR", "BANK", "TRACTOR");
✓ Filing Office fixed

• The program will ask for a pass phrase to read the private key for the FILER expected in FILER.key:

enter pass phrase for FILER:
✓ Debtor fixed
✓ Secured Party fixed
✓ Collateral fixed

• It then dumps the created state:

UCCFinancingStatement {
 financing_statement: null,
 file_number: null,
 initial_statement_date: null,
 filer: 'FILER',
 debtor: 'DEBTOR',
 secured_party: 'BANK',
 filing_office: 'OFFICE',
 collateral: 'TRACTOR',
 digital_asset_collateral: null,
 reminder_fee: null,
 continuation_window_start: null,
 continuation_statement_date: null,
 continuation_statement_filing_number: null,
 lapse_date: null,
 default_: null,
 continuation_statement: null,
 termination_statement: null,
 termination_statement_time: null,
 notification_statement: null,
 logname: 'log'
}

• A new statement, named FN-890, is being certified. The role impersonated in this instance is OFFICE.
The program prompts for the passphrase to decrypt the private key found in file OFFICE.key:

> statement.certify("OFFICE", "FN-890");
✓ File Number certified
enter pass phrase for OFFICE:
'done.'

102 The U.C.C. Statement example discussed in Reyes, ibid. For more context, see https://lexon.org/reyes.html

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 26 www.lexon.org

• The filing date is set by the OFFICE. The passphrase is re-used implicitly.

> statement.set_file_date("OFFICE");
✓ Initial Statement Date fixed
'done.'

• Ditto for the lapse date and the start of the continuation.

> statement.set_lapse("OFFICE", new Date("4/1/25"));
✓ Lapse Date fixed
'done.'
> statement.set_continuation_start("OFFICE", new Date("4/1/24"));
✓ Continuation Window Start fixed
'done.'

• Now the BANK certifies that it is paying a fee. Being a trustful example, the program does not facilitate
a transaction itself but merely prompts the real world to make this transfer.

> statement.pay_fee("BANK", 2000);
➠ system message: pay 2000 from BANK to escrow.
enter pass phrase for BANK:
'done.'

• The OFFICE sets the language of the notification statement. As there was a switch in roles, the
passphrase is queried again.

> statement.notice("OFFICE", "be notified!");
✓ Notification Statement fixed
enter pass phrase for OFFICE:
'done.'

• The OFFICE now sends a notification. Note that we are operating on one concrete instance of the
Financing Statement that handles one form. The notification is going out to the role set as the FILER.
Because this is a trustful program, it prompts the user with the action point, writing it to screen.

> statement.notify("OFFICE");
➠ system message: send message «be notified!» from OFFICE to DEBTOR.
'done.'

• The DEBTOR makes a payment, at least attests that this is so.

> statement.pay_escrow_in("DEBTOR", 1000000);
➠ system message: pay 1000000 from DEBTOR to escrow.
enter pass phrase for DEBTOR:
'done.'

• In an alternate scenario, we skip forward in time and have the BANK assert that there was a failure
to pay. In the intended logic of the Financing Statement, this announcement is all that it takes. The
bank does not have to prove it immediately for the default mechanism to kick in.

> statement.fail_to_pay("BANK");
✓ Default declared
enter pass phrase for BANK:
'done.'

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 27 www.lexon.org

• Upon the declaration of the bank, the OFFICE can sign off on the bank’s desire to take possession of
the posted collateral:

> statement.take_possession("OFFICE");
➠ system message: pay 1000000 from OFFICE to BANK.
enter pass phrase for OFFICE:
'done.'

• In yet another scenario, the bank must file for continuation after the required time has passed:

> statement.file_continuation("BANK", "continue!");
✓ Continuation Statement filed
enter pass phrase for BANK:
'done.'

• The OFFICE can declare when the statement will lapse:

> statement.set_continuation_lapse("OFFICE", new Date("4/1/23"));
✓ Continuation Statement Date fixed
enter pass phrase for OFFICE:
'done.'

• The BANK terminates the Financial Statement when the loan has been repaid (out-of-band):

> statement.file_termination("BANK", "terminate!");
✓ Termination Statement filed
enter pass phrase for BANK:
✓ Termination Statement Time certified
'done.'

• The OFFICE then releases the escrow to the DEBTOR …

> statement.release_escrow("OFFICE");
➠ system message: pay 1000000 from OFFICE to DEBTOR.
enter pass phrase for OFFICE:
'done.'

… releases the reminder fee to the BANK …

> statement.release_reminder_fee("OFFICE");
➠ system message: pay 2000 from OFFICE to BANK.
'done.'

… and finally terminates the statement.

> statement.terminate_and_clear("OFFICE");
'done.'

For an in-depth legal discussion of this example, see asst. prof. Carla L. Reyes, 2021, Creating Cryptolaw
for the Uniform Commercial Code – https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3809901

For technical background and updates, https://lexon.org/reyes.html

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 28 www.lexon.org

EXAMPLE LOG

The log forms the basis for microchains.103 Each input creates a log entry in the format:104

⧉		<hash> ⌽ <timestamp> ✦ <role> ✓ <action> ❈ <signature>

After the above test, the signed and hashed log of transactions will look like this:

Lexon log 3/22/2021, 1:34:19 AM

⌽ 3/22/2021, 1:34:19 AM ✦ FILER ✓ Filing Office fixed ❈
5a22046438c33aa138fd44486c137655c37d46f3b6bbdac166d6daae7cf3abf6fcc94f030dbc6f3f95ce8a5c5609202d
d3728676b84e538c9bfd47fe3c0e595dd26f0e0ac1c3f1691ada598cef4e299d0b60191c9128ca74aa66594e6acba5ff
e57016798ccb9ad177c666199dbd1707f0b18a3fa2777f66538596f28bedfb05539baf2e4f72302958b5557d42c030cc
1111fb799c2bae2fe3326d98479f5fda1465a87a1d7bcc2792142d49aedc4ea7eb354d5c07af89821d54d3af163358b7
0765b55e187cd9c15102b2ebffef1b234f3e9776c4c0b367992a112ee6fd3ee4c650c9bc80b423cd25dbc0b2ac0ada01
c18b8c972ea5807ccc4821463bbf421b

⧉ ced930bc47be ⌽ 3/22/2021, 1:34:22 AM ✦ FILER ✓ Debtor fixed ❈
098c119ecde9f2d87ef2e78ba2fb6dfd2a35234b7be8c7f1caa3d2398e0a78f88a9a138b3ecf6b3bd002710cc949168c
edc5054485dd0c8c473ac879d1cb9fdc1528a8120edb8f1dafa3d4bc945f18bccf8f2d5d4fcbdce3d47c68b51509e9c2
9e5f772343d0b54087e4045d1f9a03da2cad56e0bd4427ed54e30b59aced9371d30f99bee4980d54df40b97fa64465b0
c46e471e280795b61de937d8c5af9e93f961f2ecb0e3588abad12db1b2e7aac73a13e919325f595563089b1b615df0d4
a78643d01ebe4968f195f61191737e7fb7af6a7f06297ead727bcd9251fa4985a978d9a02df047192e6ca7671157907e
29265e433710298294571493001df5e1

⧉ eb5c28b69b4b ⌽ 3/22/2021, 1:34:22 AM ✦ FILER ✓ Secured Party fixed ❈
5b89a88bfec5fcac46cbfb3b541a408ad4160c52e95d5dd51006cbdb3f0603d1850a1cc0853dcb4245b047e626ae4b99
704fd0a75c09c1bc4c539b0b631f5862a3275599006e4436e65f76a013b62204b63d5747882180faa98884b5b1a0a893
0bd0e6a5339be7b5fcd148d690c840e18c60d8092c88ed8e0387cff5cb0a25cb0ed8ea90cca7fed2425aa830add7b4c8
f4164476fd0f19cbadee4d7dd7b0d2c76bf533023298143282e43a9e6af14a5e11c69812e78cad9e43d53d58f0281c2a
8e180dd2c3b6ae3a851e38dded02c1be6c144a40399d3beb9d66ae4d8a0654bc1c4d94243fcf347a675fdfebab024d0e
7951407817f8678c87c42c612804c57f

⧉ f3b21bde6076 ⌽ 3/22/2021, 1:34:22 AM ✦ FILER ✓ Collateral fixed ❈
6ff7ab169e49f2f574c7f13497a0c134eb5987476a6fcc35515b60775cdaef75afa1bcdae06be7965921cf36da228aec
1b195f21b4696249d327a6799efca1d5dd176ec95050407de40427dbdf5af8a6d4a6e9eb88271717c51d7cded996fc93
1be7e1c932716c26ee3cfbb2281579061342c9101e4bf66974ad85e36c6dcca156fd1c6040f5f2925e4ae77e3b9b2c8c
7644020f86971d958600b8a17e2385f6d5d8c3c505f649d1a97852116869f2bca53fa172f63d05b88eda1f312620bab5
a90bf35334dc4a3890f737a7ad950791e1c49eeabd5b64c51a3a6046cada2421e18726643bbff3a7fe63ce18b15af033
2972635caecac4bafc0659d4f71d3675

⧉ 448d9a8e7ba5 ⌽ 3/22/2021, 1:35:12 AM ✦ OFFICE ✓ File Number certified ❈
6d41057ea47910a576a0c2a686fdf73855b581199476309d90a207fdc3a8da70ac9bb71ab3bc5e2f9a2fc368305a6f4b
b14dee00e590e7dd5265c0ef847e8f9f5a9f7352f55eed0eb2a9a62365d344df646240cf4cfcde1cc75c85b8a26b2d18
b66908089372e3f5ba8e09117d4aa07cc54d105ffa37a8f623814040b145821530c75cdea45a440e00960bbc5f118751
32d1d603723fa28fa0415cb709bee6d0c75b1b390d07545614abdb111434970b5ebb43c974ebcfaf840a7424d6109c5b
b1905e4bb0faf4ebdb5a98ee93f5783f6732fb2e720dd52a9b6095c8547570224c57128ba2487c5443a3b888b6e03d63
c771250ecbc0b09f64bb47de04f90499

⧉ caaa3095898b ⌽ 3/22/2021, 1:35:28 AM ✦ OFFICE ✓ Initial Statement Date fixed ❈
3c444e5d473349ebe33471a0409d87567eff9fa4eae1171e8fa24dd2fb0708f2275a2706a141c16970aaed96b9d6adef
16dbc70c81708b2b4d16035e77bf550d6f93d12d4367b3724b4d81ce66f519a351b15a9b656c176b2abba539b277f0dc
747544b59397d01f7301327252e22a298a3cd22a6d31073b762e243d6a4332249384ea3c492dfbacef5be0efe34f2641
3876f2977f4c2a3249c5a44cd11ad62814dda2ab365413fe4d0483d1f069a6e27bf661f2a123b20470bd0f0bcbde699a
292b90e8beffc557ba391f8cebc5b7ef851bbb4dced5364a573fd0ceed306a05cf742fe7492297365b61304fa511f7d0
69b0be6f3bc046cfb71a151b726f680a

⧉ cf770ab8947d ⌽ 3/22/2021, 1:35:49 AM ✦ OFFICE ✓ Lapse Date fixed ❈
6107eff31587d8a1d75b0923ed71469bba40181bd8852703ea8f237d2185acbdee5b3052716537cd3b8c1a7382ec1717
83c324a3467e2ebc937b580d41fbffbb78ab0e100c29afabdccd7dda0a3985159f74cee3387c50d0834a801d82a93e64
8a91aac1203cd7a4ab9b45b4f3c5b21313a9199d75b160f371ea4fdf1a577d411859c2dc33355af1f0544906d679b41a
989b90bd2248a6c81758dc4a345f6fdd08449c44b0666e721b5948bbe770e9c31a8574d3a1fb50959452fdff90989dca
3c44e0ff6526926099e70af07cca72f840c2ba01d3d36f894d5ca7af491d0a0a3169c50f95fb4438ed17871c9034a275
139c64574c3528b8e54e66e5d6e67547
...

103 Cf. The Micro Blockchain, pg. 8.
104 When used with the options signed and hashed, cf. History, pg. 8.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 29 www.lexon.org

EXAMPLE ABSTRACT SYNTAX TREE

This is a part of the abstract syntax tree (AST) that the compiler creates internally when processing the
grammar and text discussed in chapter Grammar, pg. 4. It reflects natural language grammar rather
than programming logic. Such a tree can be created from any Lexon text using the flat tree options.

 ↳ statement
 ↳ action
 ↳ subject
 ⎸ ↳ symbols
 ⎸ ↳ symbol «payer»
 ⎸ ↳ article
 ⎸
 ↳ predicates
 ↳ predicate
 ⎸ ↳ payment
 ⎸ ↳ pay
 ⎸ ⎸
 ⎸ ↳ expression
 ⎸ ⎸ ↳ combination
 ⎸ ⎸ ↳ combinor
 ⎸ ⎸ ↳ combinand
 ⎸ ⎸ ↳ symbol «amount»
 ⎸ ⎸ ↳ article
 ⎸ ⎸
 ⎸ ↳ preposition
 ⎸ ⎸
 ⎸ ↳ object
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «payee»
 ⎸ ↳ article
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «arbiter»
 ⎸ ↳ article
 ⎸
 ↳ predicate
 ↳ fixture
 ↳ fix
 ↳ symbol «fee»
 ↳ article

Figure 10 – Partial example of a Lexon abstract syntax tree

To create such a tree for your own Lexon text, at https://lexon.org/compiler paste it into a. (see Figure
1, pg. 5), check options flat and tree in d., click the compile button b. for the tree to appear in c.

There are fine-grained options for highlighting specific elements of the tree: color, highlight etc.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 30 www.lexon.org

PROGRAMMABLE MONEY

This is an excerpt from the 2018 presentation Programmable Money at the Cleveland Federal Reserve,
with a future head of the SEC in attendance. It explains a blockchain-based concept of programmable
money. The Lexon Token achieves programmability through smart accounts (See Extensibility, pg. 14).

Towards Programmable Money

Figure 11 – One-off transfer rules

With programmable money the idea is that the
rules do not only control my outlet, one-off, at
exactly the time and place – and only then –
that money leaves me (or not).

That could be (and often is) implemented
locally centralized, even if the transport was
P2P.

You don’t need a blockchain for that. Even
if the rules are triggered from the outside, which
in blockchain scenarios is called an oracle.

Figure 12 – Persisting, 'baked-in' rules

… instead, programmable money has rules
‘baked into the coin.’ Rules that I built in and
that travel with the money even after I have
given it away.

Rules that can identify peers and oracles,
‘have memory’ of past facts and can become ar-
bitrarily complex.

And of course, they are still simply smart
contracts.

The Concept

Figure 13 – Future effect of persistent rules

… the major difference is that information that
arrives later (after my release of the coin), can
still be included in the execution of the rules.
This makes the rules programs.

And my rules can determine the way of the
coin long after I paid it out.

Supply Chain: Safe Contracting

Figure 14 – Safe subcontracting

For supply chains, programmable money can
protect subcontractors against being squeezed
out or suffering from delayed payments. When
the contractor receives a delivery from the sub-
contractor, the receipt triggers the payment.

Figure 15 – Complex persistent rules

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 31 www.lexon.org

Supply Chain Payment Hierarchies
The payout can be more interesting than just a
binary signal of ‘pay’ or ‘not’.

It can let money flow to different parties,
or back to the customer on arbitrarily complex
conditions.

Figure 16 – Hierarchy of persistent rules

… the logic can be nested, programmed by
different parties, layered across different con-
cerns ‘into the same coin.’

Eventually it can automate, speed up, re-
duce frictions and costs, and opportunities to
seek rent, across the entire supply chain.

Cost Reductions for Supply Chains
• Legal cost for contracting
• Cost of suits (to company)
• Cost of legal system (to public)
• Losses through defaulted claims
• Cost of regulatory compliance
• Cost of regulating
• Cost of money transfer
• Cost of financing
• Cost of corruption
• Cost of auditing

For the original, longer presentation, see https://lexon.org/programmable-money-2018.pdf

✧

ROBOTIC LAWS

The science fiction author Isaac Asimov coined the term robotic laws105 in the 1940s for the science
fiction universe over-arching his short stories and novels. He evolved them over time and showed how
easily they can become self-contradictory or exploitable by a rogue machine.

The Laws are so often quoted and well known in nerd culture that they will have informed many
discussions about consequential, real-world decision-making algorithms. They are cited here to indicate
one direction in which lawmaking will have to think – and write – in Lexon, to create laws and regula-
tions that can be directly and verbatimly implemented into autonomous machines.

This is not science fiction but both possible today and indispensable tomorrow. Because Lexon is
based on symbolic AI, it complements generative AI, adding agency, transparency, and reliability.

First Law A robot may not injure a human being
 or, through inaction, allow a human being to come to harm.

Second Law A robot must obey the orders given it by human beings
 except where such orders would conflict with the First Law.

Third Law A robot must protect its own existence
 as long as such protection does not conflict
 with the First or Second Laws.

105 Isaac Asimov, 1950, I, Robot, pg. 40.

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 32 www.lexon.org

TOKEN FUNCTION SIGNATURES

The token is implemented in Solidity. For summary descriptions see from pg. 11, for function details
including log emissions (Solidity events), see https://lexon.org/token-api.

Basic Transfer
availableBalance(address a) public view returns (uint)
transfer_to_serial(uint serial, uint amount) external returns (bool)
transfer_to_name(string calldata name, uint amount) external returns (bool)
funds(address from, address to) public view returns (uint)
balanceOf(address account) external view returns (uint)
transfer(address recipient, uint amount) public returns (bool)

Approval
allowance(address owner, address spender) public view returns (uint)
approve(address spender, uint amount) public returns (bool)
transferFrom(address sender, address recipient, uint amount) public returns (bool)
increaseAllowance(address spender, uint addedValue) public returns (bool)
decreaseAllowance(address spender, uint subtractedValue) public returns (bool)
permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public
nonces(address owner) public view returns (uint256)

Engage
engage() external
unlock() external
lockwait() public view returns (uint)
lockwaitOf(address a) public view returns (uint)

Sealing
seal() external
unseal() external
whitelist(address entry) external
delist(address entry) external

Serial & Name
register(address account) public
label(string calldata name) external

Multi-Signature
demand(uint requirement) external
add(address signer) external
remove(address signer) external
sign(address account, address to, uint amount) external
retract(address account) external

Account Abstraction
anticipate(address anticipated) external
share(address secondary) external
coshare(address secondary) external
unshare() external
revoke(address secondary) external

Avatar
mark(string calldata url) external returns (bool)

Email
publish(string calldata email) external returns (bool)

Subscribe & Feed
subscribe(address poster) external returns (bool)
post(string calldata message, string calldata attachment) public returns (bool)
unsubscribe(uint index) external

Message
message(address addressee, string calldata message, string calldata attachment) public returns (bool)

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 33 www.lexon.org

Commitment
commit(address committee, uint commitment, address arbiter, uint expiration) public
prolong(uint expiration) external
lower(address committer, uint reduction) external
raise(uint increase) external
end(address committer) external

Promise
make(address promissee, uint amount) external
forgive(address promissor) external

Cheques
form(address receiver, uint number) external pure returns (bytes32)
write(bytes32 hash, uint amount) external
good(address signer, bytes32 hash) external view returns (uint)
deposit(address signer, uint number) external

Voucher
voucher(uint nonce, address issuer, address claimant, uint tokens, uint deadline, uint lock_in)
 public view returns(bytes32)
convert(uint nonce, address issuer, address convertant, uint class, uint deadline, uint lock_in, bool force,
 bytes calldata signature) public returns (uint)
claim(bytes32 voucher) external

Reversibility
accede(address protected, address forum, uint deadline) external
extend(uint deadline) external
reduce(address revertee, uint reduction) external
release(address revertee) external
reverse(address revertee) external

Escrow
establish(address prospect, uint offer, uint ask) external
place(uint offer, uint tag, uint minimum) external
complete(address seller, uint amount) external payable returns (bool)
agree(address seller, uint amount, uint tag) external payable returns (bool)

Sponsoring
collect(address [] calldata protege) external
sponsor(address [] calldata receivers, uint amount) external
dropout() external
reward(address [] calldata protege) external returns (uint)

Burning
burn(uint amount) public
burnFrom(address account, uint amount) public

Digital Deeds
approve(address to, uint token_id) public
balanceOf(address owner) public view returns (uint)
getApproved(uint token_id) public view returns (address)
isApprovedForAll(address owner, address operator) public view returns (bool)
ownerOf(uint token_id) public view returns (address)
safeTransferFrom(address from, address to, uint token_id) public
safeTransferFrom(address from, address to, uint token_id, bytes memory data) public
setApprovalForAll(address operator, bool approved) public
supportsInterface(bytes4 interface_id) public pure returns (bool)
tokenByIndex(uint index) public view returns (uint)
tokenOfOwnerByIndex(address owner, uint index) public view returns (uint)
tokenURI(uint token_id) public view returns (string memory)
totalSupply() public view returns (uint)
transferFrom(address from, address to, uint token_id) public

Sale
price(uint total, uint offset, uint adjust) public pure returns (uint)
purchase() external payable

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 34 www.lexon.org

DAO
daofy(uint value) external
decentralize() external
join(address dao, uint pay) payable external
leave(address dao, uint pay) payable external
nominate(address candidate) external
perform(address proposal) external
propose(address lib0, address lib1, address lib2, address lib3, address lib4, address lib5) external
affirm(address proposal) external
count(address candidate) external

Gates
gate_set(Gate _gate, address keeper, bytes32 filter, uint obligation) payable external
gate_prepare(Gate gate, address keeper, bytes32 filter, uint obligation, uint fee, payable receiver) payable external
gate_activate(Gate gate, address gatee, bytes32 filter, uint obligation, uint fee, payable receiver) payable external
gate_close(address gatee, uint fee, payable receiver) payable external
gate_access(address gatee, uint cmd, address addr1, address addr2, uint n1, uint n2, uint n3) payable external
gate_info(address gatee, uint cmd, address addr1, address addr2, uint n1, uint n2, uint n3)
 payable external view returns (string memory)

Table 3 – Token function signatures

GATE INTERFACE
See https://lexon.org for a forthcoming paper on gate programming and https://lexon.org/gate-api.

Operation
enter(address gatee, address keeper, bytes32 filter, uint obligation, uint fee, uint receiver)
 payable external returns (bool)
bar(address gatee, uint fee, payable receiver) payable external returns (bool)
close(address gatee, uint fee, payable receiver) payable public returns (bool)
access(address gatee, address keeper, uint cmd, address addr1, address addr2, uint int1, uint int2, uint int3)
 payable external returns (bool)
query(address gatee, address keeper, uint cmd, address addr1, address addr2, uint int1, uint int2, uint int3)
 payable external view returns (string memory)
info(uint value) payable public view returns (string memory)
Events
onSending(address signer, address from, address to, uint amount) external returns (bool)
onReceiving(address signer, address from, address to, uint amount) external returns (bool)
onWriting(address signer, address account, bytes32 hash, uint amount) external returns (bool)
onSetting(address signer, address account, string calldata email) external returns (bool)
onMessaging(address signer, address account, address addressee, string calldata message) external returns (bool)
onPosting(address signer, address account, string calldata message) external returns (bool)
onCommitting(address signer, address account, address committee, uint commitment, address arbiter,
 uint expiration) external returns (bool)
onProlonging(address signer, address account, uint expiration) external returns (bool)
onRaising(address signer, address account, uint increase) external returns (bool)
onLowering(address signer, address account, address committer, uint reduction) external returns (bool)
onEnding(address signer, address account, address committer) external returns (bool)
onMaking(address signer, address account, address promissee, uint amount) external returns (bool)
onForgiving(address signer, address account, address promissor) external returns (bool)
onAcceding(address signer, address account, address forum, address protected, uint deadline) external returns (bool)
onExtending(address signer, address account, uint deadline) external returns (bool)
onReleasing(address signer, address account, address revertee) external returns (bool)
onReducing(address signer, address account, address revertee, uint reduction) external returns (bool)
onReversing(address signer, address account, address revertee) external returns (bool)
onBurning(address signer, address account, uint amount) external returns (bool)
onTransferring(address signer, address from, address to, uint id, uint price) external returns (bool)
onAccepting(address signer, address from, address to, uint id, uint price) external returns (bool)
onLetting(address signer, address from, address to, uint id, uint fee) external returns (bool)
onReturning(address signer, address from, address to, uint id, uint fee) external returns (bool)
onJoining(address signer, address account, address dao, uint contribution) external returns (bool)
onLeaving(address signer, address account, address dao, uint take) external returns (bool)

Table 4 – Gate interface

THE HOLY GRAIL OF COMPUTATIONAL LAW

© 2023 Henning Diedrich 35 www.lexon.org

INDICES

INDEX OF FIGURES

Figure 1 – Compiler screen at lexon.org/compiler ... 5
Figure 2 – Hashed and signed log format ... 8
Figure 3 – two-step gate transfer .. 14
Figure 4 – common three-step smart contract transfer ... 14
Figure 5 – Virtual centralization by smart contracts .. 15
Figure 6 – Decentralization through gates .. 15
Figure 7 – Loosely stacked gates ... 15
Figure 8 – Token sale price based on tokens issued .. 17
Figure 9 – Effective rebate (schematic) ... 17
Figure 10 – Partial example of a Lexon abstract syntax tree ... 29
Figure 11 – One-off transfer rules ... 30
Figure 12 – Persisting, 'baked-in' rules ... 30
Figure 13 – Future effect of persistent rules .. 30
Figure 14 – Safe subcontracting .. 30
Figure 15 – Complex persistent rules .. 30
Figure 16 – Hierarchy of persistent rules .. 31

INDEX OF TABLES

Table 1 – Token price formula ... 17
Table 2 – Token price points ... 17
Table 3 – Token function signatures ... 34
Table 4 – Gate interface .. 34

INDEX OF SOURCES

Source 1 – Lexon digital contract example .. 2
Source 2 – Lexon Grammar Form (LGF) example .. 4
Source 3 – Lexon sentence grammar (detail) ... 4
Source 4 – Lexon code example sentence ... 4
Source 5 – Lexon document structure .. 4
Source 6 – Compilation example (Javascript, barebones) .. 5
Source 7 – Compilation examples (Solidity, barebones) ... 6
Source 8 – Log entry example .. 8
Source 9 – Email configuration .. 9
Source 10 – Lexon code example (escrow) .. 20
Source 11 – Lexon compilation example (barebones) .. 20
Source 12 – Lexon compilation example (Javascript, all auxiliaries) .. 24

Release 1 || 12.12.3

