
© 2023 Henning Diedrich, see pg. 19. 1 www.lexon.org

Lexon to Æternity
H. Diedrich

hd@lexon.org
2 June 23

ABSTRACT
This paper presents a workflow to create digital
contracts. It describes the basics of the plain-
text programming language Lexon; how to use
the Lexon online compiler to translate con-
trolled English into blockchain smart contracts;
and the utility and sales mechanism of the
Lexon Æternity Token, LÆX.

INDEX
Introduction .. 1
LANGUAGE ... 2
Approach ... 2
Application .. 3
Grammar ... 4
COMPILER .. 5
Operation .. 5
Example .. 5
Options .. 6
TOKEN ... 7
Utility .. 7
Sale .. 7
CONCLUSION .. 8
DISCLAIMERS ... 9
LICENSE .. 9
APPENDIX ... 10
Example Compilation .. 10
Lexon for Law ... 12
Abstract Syntax Tree .. 18
Robotic Laws ... 19
INDICES ... 20

INTRODUCTION
A method to compute legal texts has been
searched for since Leibniz’ 1666 de arte combina-
toria.1 While electronic discovery has become the
norm since the 1970s, the hope for electronic anal-
ysis of legal texts – conceived already in the late
1940s – as the complementary, central tenet of
Computational Law,2 had so far not been realized.

1 Leibniz’ thesis is regarded as the beginning of com-

puter sciences. For more on the history of Lexon, and
Computational Law: https://lexon.org/intro & the Lexon
book, 2020 – https://amazon.com/dp/169774768X.

2 See prof. M. Genesereth, 2021, What is Computational
Law? – https://law.stanford.edu/2021/03/10/what-is-
computational-law/.

3 Concretely, the abstract syntax tree (AST) that the
Lexon compiler creates is Lexon’s internal model of
the meaning. See appx. Abstract Syntax Tree, pg. 18;
cf. Processing Meaning in Lexon, ibid., pg. 89.

This changes with the language Lexon,
which makes it possible to make a computer ‘un-
derstand’3 the logic of a law or an agreement.
Lexon provides what Leibniz was looking for: a
way to program law,4 and contracts. This em-
powers lawmakers and will reduce the cost of
access to justice. It is a beautiful match with
blockchains, making smart contracts readable
for all, providing a missing link to the paradigm
of trustlessness5 by alleviating the need to trust
the programmers. More importantly, to enable
the use of smart contracts in business, Lexon
makes them readable for judges. Yet, it might
find broad application in trustful ibid. 5 settings
and as a new form of legalese.

As a programming language, Lexon is the
first of a new generation – arguably, the 6th and
last – the penultimate developmental step be-
fore computers can reliably6 read any human
text: intelligent agents programmed in Lexon
solve real-world problems, are unbiased, excel in
transparency and provide unparalleled agency to
users – the well-known weaknesses of machine
learning. Digital contracts written in Lexon ele-
vate prose to a speech-act of felicitous performa-
tive language7 when executed in a trustless en-
vironment: because of the unstoppable nature of
the blockchain, these words become true by the
act of uttering them; a power commonly associ-
ated with magic. And rightly so: In effect, such
illocution ibid. 7 needs neither judges nor litiga-
tors and will enable long-tail markets that now
cannot exist because their margins could not
sustain the cost of policing them. From an AI
point of view, an artificial judge is being built
right into every digital contract; because a com-
puter will provide a deterministic result, as the
case may be. This long-sought device makes vi-
able the very simple as well as the very complex.

4 Cf. Clack and Reyes, footnotes 21 and 22, pg. 3 and
appendix Lexon for Law, pg. 12

5 In blockchain parlance, trustless means secured by
blockchain mechanics – trustful means without such
technical guarantees, depending on trust in someone.

6 Note that 100% determinism – often translatable to
accuracy – is required in many professional use cases,
which is a known challenge for machine learning.

7 J. L. Austin, 1955, How to Do Things with Words.
First noted by David Bovil.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 2 www.lexon.org

LANGUAGE

Lexon is a plain-text programming language.
This means that, it reads like natural English
and digital contracts written in Lexon can be
understood by anyone, without requiring any
prior knowledge of programming. With moder-
ate effort – or guidance by commodity AI – eve-
ryone will be able to write them. Lexon is also
understood by machines. Its grammar really ex-
presses the intersection of what both humans
and machines can parse. Grammars and compil-
ers will evolve to extend their reach into both
domains.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow,
appoints the Payee, appoints the Arbiter,
and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the
remainder of the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 1 – Lexon digital contract example

The Lexon approach has long been sus-
pected to be a feasible path to give machines a
handle on natural language, but had so far suc-
cessfully been applied only to first-order logic,8
which typically does not suffice to express rele-
vant programs.9 Lexon, like most programming
languages and the language of law,10 is based on
higher order logic.11

8 Attempto Controlled English (ACE) stands out. It

compiles to 1st order Discourse Representation Struc-
tures – http://attempto.ifi.uzh.ch

9 Prolog and its heirs add a lot of fascinating math to
their first-order logic clauses to make things work.

10 See Law and Logic, the Lexon book, ibid., pg. 63.
11 Lexon’s stack is different; see Lexon, ibid., pg. 112.

Essentially, code and natural language are parsed in
the same step, with far-reaching consequences.

12 The above example is really a template: The concrete
contract will have digital or descriptive identifiers in-
serted for the parties.

APPROACH

Lexon allows for the articulation of unambigu-
ous prose12 and the deterministic computation
of logical results from it. Its grammar overlays
natural language and higher order logic, in the
way that Wittgenstein13 demanded. For artifi-
cial domains – like law, finance, programming,
or entertainment – this contributes to the quest
for unambiguous, universal languages for philo-
sophy and pure thought as envisioned by
Leibniz, Wilkins, Frege, Russel, or Carnap.

Lexon achieves its result differently than
was long supposed to be the way.14 It arguably
developed in a blind spot caused by the focus
on the meaning of words that emanated from
analytical philosophy and informed – and
maybe hampered – the development of early,
general artificial intelligence.15 Instead of trying
to define words out of context, all we might ever
(need to) know is the context, or as the later
Wittgenstein proposed:

“the meaning of a word may be
defined by how the word can be used
as an element of language.” ibid. 13
Lexon focuses on the use – and fundamen-

tally abandons the notion that meaning is
vested in nouns. In so far as this is a structural-
ist argument, it shifts the context from the lan-
guage to the four corners of an agreement.16

The result is that in Lexon texts, nouns
tend to be interchangeable, and meaning is
transported instead by the relationship between
the nouns that the text describes. What matters
is that the same name, or noun, is used consist-
ently to refer to the same entity throughout one
digital contract. A noun’s common meaning can
contribute to readability – but not to the spe-
cific meaning of the document. This may be sur-
prising only because it does not conform to a
naïve take on linguistics. But dropping the in-
herent meaning of nouns is not unusual:

13 L. Wittgenstein, 1953, Philosophical Investigations.
Asst. prof. Andrea Leiter first noted the connection.

14 Cf. Wilkins 1668 proposal for a better way to write
words – https://archive.org/details/AnEssayToward-
sARealCharacterAndAPhilosophicalLanguage and
https://www.youtube.com/watch?v=TjdbrLxc3Ck

15 See https://lexon.org/intro for the forthcoming paper
on Lexon Intelligent Agents that elaborates on Lexon’s
role as a tool for general artificial intelligence.

16 To make it concrete is a philosophical demand, too.
Cf. W. James ‘vicious abstractionism’ in The Meaning
of Truth, 1909, pg. 135.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 3 www.lexon.org

Lexon shares this feature with mathemati-
cal formulas and any programming language
where variable names are interchangeable; it is
in keeping with how in business contracts, nouns
are promoted to proper names to increase clar-
ity: uncoupling from the inert meaning of words,
and instead putting them into the service of the
context, as neutral markers. Preferably, mean-
ingful markers, but to be ignored by a judge
when discerning the meaning of a contract.

To exaggerate, the one word Lexon actu-
ally17 understands is transfer. Which is unsur-
prising as this is the only act computers can per-
form: to transfer bits from one register to an-
other. This verb anchors Lexon texts; every-
thing else is qualifiers. Again unsurprisingly,
this design covers many types of agreements, as
the transfer of something is the common topic
of contracts.

An elemental contribution of the Lexon ap-
proach is how it maps natural language to
compiler building tools – intuitively convincing,
and in line, too, with what the tools were
designed for18 – yet different from what com-
puter sciences had gotten used to in the chase
for ever faster compile times. Only a simple ex-
tension to an established meta-language
(BNF19) was required to better describe natural
language grammar, for Lexon to stand upon the
shoulders of the giants who paved the way.

APPLICATION

Because Lexon solves a long-standing
question of Computational Law, it works for
blockchain smart contracts, as well as off-line –
and even off-machine. Transcending computers,
it may20 over time replace today's legalese as a
more useful, less ambiguous, and more readable
language of law and contracting. The work of
professors of law and computer sciences regard-
ing Lexon21, 22 may serve as inspiration in imag-
ining the progress that could be possible; also
for a two-thousand-year-old industry that is do-
ing just fine.

17 Lexon’s vocabulary is out of the scope of this paper.

A playful interactive device to inspect it can be found
at https://lexon.org/vocabulary. Also see the forth-
coming 2nd edition of the Lexon Bible, Amazon.

18 Lexon uses Generalized Left-to-right Rightmost pars-
ing (GLR), first implemented in 1984 by Masaru To-
mita for natural languages in LR Parsers for natural
languages. GLR was first proposed for extensible lan-
guages by Bernard Lang in his 1974 paper Determin-
istic techniques for efficient non-deterministic parsers.

Lexon is for everyone, not only for law-
makers and programmers, and it enables the
coming profession of the legal engineer. For its
advantages in transparency and accessibility,
Lexon may become a mainstream programming
language. Because new programming languages
are successful when, to increase productivity,
they can strengthen teamwork or reduce sources
of errors. Lexon does both. Going beyond what
object-oriented programming achieved for team-
work of programmers, Lexon includes non-pro-
grammer domain experts, expanding the con-
cept of team to reach beyond the circle of cod-
ers. And while developers might see no reason
to leave the current mainstay of 3rd generation
programming languages behind, their employers
will find it desirable to increase transparency,
and to have legal, business, and domain experts
verify the programmers’ results first-hand.

But Lexon’s home game are digital con-
tracts for everyone, i.e., simple blockchain smart
contracts that are legally enforceable agree-
ments. They reach beyond Computational Law
and add the unique feature of unbreakability to
contracting, which in due time will have tremen-
dous economic impact across all walks of life.

As a match to Lexon in the crypto world,
the Æternity blockchain stands out, because like
Lexon, it is designed and implemented with a
focus on sound engineering and reliability; its
motto ‘for the masses’ is reflected in the eco-
nomic transaction costs that allow for low-cost,
DIY Lexon contracting. And different from
many other projects, the Æternity blockchain is
a true, decentralized and common good. Finally,
its fast blocktimes – thanks to its microblocks
consensus mechanisms – carry web3 program-
ming over the threshold where wait times are
short enough that users can seamlessly interact
directly with the chain. Æternity’s speed and
scalability make it a tool of choice for AI for an
additional reason: because AI suffers from the
trash-in-trash-out syndrome, blockchains are
understood to play a central role in future AI
architectures as reliable shared data stores.

19 Bachus-Naur form (BNF) is a metasyntax notation to
describe the grammar of computer languages, first
used to describe the grammar of ALGOL in 1960.

20 An expectation articulated by law scholars.
21 Prof. Christopher C. Clack, 2021, Languages for Smart

and Computable Contracts – https://arxiv.org/
ftp/arxiv/papers/2104/2104.03764.pdf

22 Asst. prof. Carla L. Reyes, 2021, Creating Cryptolaw
for the Uniform Commercial Code – https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=3809901

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 4 www.lexon.org

GRAMMAR

The Lexon approach is independent of a specific
natural language and the Lexon grammar com-
piler allows for a multitude of natural languages
to be implemented.23

Lexon Grammar Form
Lexon grammars are defined in Lexon Grammar
Form (LGF),24 which is similar to Backus-Naur
Form (BNF),ibid. 19 enhancing readability to bet-
ter capture the complexity and redundancy of
natural language. For example, LGF’s square
brackets resolve optional elements as expected:

sentence:

 subject [condition [","] [":"]] predicates separator

Source 2 – Lexon Grammar Form (LGF) example

The above rule is equivalent to:25

sentence:

 subject predicates separator
 or subject condition predicates separator
 or subject condition "," predicates separator
 or subject condition ":" predicates separator
 or subject condition "," ":" predicates separator

Sentence Structure
Lexon’s grammar realizes the English natural
language sentence structure of subject, predi-
cate, object. That Lexon’s internal model re-
flects this pattern of natural language ibid. 3 sets
it apart from other programming languages.
Note how the object is included in the predicate:

sentence: subject [condition [","] [":"]]
predicates separator

predicates: predicates "," ["and" ["also"]] predicate
 or predicate

predicate: payment

…

payment: pay expression preposition object

pay: "pay" or "pays"

preposition: "to" or "into"

Source 3 – Lexon sentence grammar (detail)

23 The Lexon approach has been tested for English, Ger-

man, and Japanese. The indication is that it will work
for most languages, with English being one of the least
challenging cases. See https://lexon.org/intro.

The above rules are employed to parse a
sentence like this recital:

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

Source 4 – Lexon code example sentence

Document Structure
Lexon’s grammar includes the layout of the doc-
ument structure.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints
the Payee, appoints the Arbiter, and fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards pay the remainder of
the escrow to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to
themselves, and afterwards return the
remainder of the escrow to the Payer.

Source 5 – Lexon document structure
This order makes it harder to write ambig-

uous agreements. It reflects a common sequence
of the parts of a paper contract.

The internal model that the compiler cre-
ates during the translation is shown in appendix
Abstract Syntax Tree, pg. 18. It visualizes the
relationships that the compiler actually ‘under-
stands’ from the sentence in Source 4, express-
ing a linguistic structure as a binary tree.

The reduced grammar of Lexon forces sen-
tences to be written straightforwardly, even
when nested and verbose. The fact that the
grammar is parseable by a computer guarantees
mathematical unambiguity even though many
redundant ways of expressing the same meaning
have been enabled. The grammar still provides
a one-way funnel; the flexibility is not bidirec-
tional: the same can be articulated in many dif-
ferent ways but each way has only one meaning.
It is exactly this that is achieved by limiting
English grammar to a controlled grammar.

24 For more on LGF see https://lexon.org/intro.
25 Note the last rule that would not be correct English

punctuation but is not ambiguous either.

 Head

 Definitions

 Recital

 Clause

 Clause

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 5 www.lexon.org

COMPILER

The Lexon compiler26, 27 accepts text adhering
to the controlled grammar described above and
transposes this natural-language code to the
functional 3rd generation blockchain program-
ming language Sophia. Lexon Æternity Tokens28
provide metered access to the online Lexon com-
piler.

ÆTERNITY

Æternity is a layer-1 blockchain that is particu-
larly well-crafted and economic to use.29 The
Lexon online compiler is a web3 æpp interacting
with the Æternity blockchain to help creating
new web3 æpps for this chain. Its payment
mechanism, the LÆX token, is implemented as
a smart contract running on Æternity.

SOPHIA

Sophia30 is the language that smart contracts
are programmed in for the Æternity blockchain.
It is designed to be as clear and safe as possible.
Lexon users however, do not need to learn So-
phia to be able to create smart contracts.

OPERATION

Figure 1 – Compiler screen at lexon.org/sophia

The online compiler is operated as follows:

a. text paste Lexon text into a.
b. compile click compile button b.
c. result the resulting Sophia

 code is shown in c.
d. options to execute special func-

 tions, discussed below,31
 check boxes in list d.

26 A compiler is basically a program that helps create

other programs. It processes human-written files to
create output that can be executed by a computer.

27 Online at http://lexon.org/sophia

EXAMPLE

For example, the Lexon text given in Source 1,
pg. 2, could be pasted into field a. Checking
barebones in d., then clicking b., the Lexon
compiler would translate the Lexon text in a.
into this Sophia code and show it in c.:

@compiler >=6

main contract Escrow =

 record state = {
 payer : address,
 payee : address,
 arbiter : address,
 amount : int,
 fee : int
 }

 entrypoint init(payee : address,
 arbiter : address, fee : int) = {
 payer = Call.caller,
 payee = payee,
 arbiter = arbiter,
 amount = Call.value,
 fee = fee
 }

 stateful function transfer(to : address,
 amount : int) =
 Chain.spend(to, amount)

 function permit(authorized : address) =
 require(Call.caller == authorized,
 "no access")

 stateful entrypoint pay_out() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payee,
 Contract.balance)

 stateful entrypoint pay_back() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payer,
 Contract.balance)

Source 6 – Compilation example (barebones)

The options d. controlling the output in c.
are described below.31

The above code can be deployed to the
Æternity blockchain. It is optimized for demon-
stration purposes: it is short, not cluttered with
comments, handling of fringe cases, nor extras
like logging to the chain receipt log. For a more
production-ready compiler output from the
same plain-text input, see appendix Example
Compilation, pg. 10. It adds all the elements
that barebones tells the compiler to leave out.

28 See Token, from pg. 7, and http://lexon.org/laex
29 See https://aeternity.com/aeternity-101
30 See https://aeternity.com/#sophia
31 See Options, pg. 6.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 6 www.lexon.org

OPTIONS

Settings for the compilation process are made in
the compiler screen at https://lexon.org/sophia
(see Figure 1, pg. 5) by ticking boxes in screen
area d. Not all options are interesting for every-
one. Those more relevant to beginners are
marked with an asterisk.*

Results shown in screen area c. (ibid.) will
vary: some settings in d. cause information to
be displayed in c., instead of code. In some in-
stances the contents of field a. will be ignored
when button b. is clicked: e.g., when checking
version in d., the version number of the com-
piler is displayed in c., no matter the contents
of field a. When checking the option names, the
list of all symbols (defined nouns) that are found
in the Lexon code given in a. is listed in c. For
some combinations of options, the output in c.
will be a mix of code and other information.

Developing Lexon Code
The following options can be helpful when writ-
ing Lexon texts. The online compiler serves as a
convenient sounding board to find one’s syntax
errors and to explore what document structure
will make sense for a task at hand.

version*
Display the compiler version information in c.
verbose*
Trace detailed compilation steps in c., to find
errors in the Lexon text given in a.

echo-source
List the Lexon source code that will be pro-
cessed in c., but not the compilation result, to
double check what input arrives at the compiler.

precompile
Show sanitized – pre-compiled – source code in
c. and no compilation result. This shows the li-
brary32 texts included in the source code, and
the line numbering that error messages refer to.
It also allows verification that definition and
clause names are recognized as intended.

echo-precompile
Show precompiled Lexon source code in c. and
also the compilation result.

names*
List all names found in the Lexon code in c.

* option more likely of interest for beginners.
32 Libraries contain text written to be used and re-used

in multiple projects. It is inserted into the main text.

barebones*
The generated code is a simplistic ‘happy path’
for demonstration purposes. It does not have
comments and does not catch errors or edge
cases. This is a starting point to verify semantics
and basic flow. It is an interesting learning de-
vice that visually surfaces the relationship be-
tween the Lexon text and the resulting Sophia.

comments*
The generated code embeds the Lexon text and
generic comments to help the auditing of it.

instructions*
The generated code has detailed instructions for
use in its lead-in comments section. They reflect
the specific Lexon code at hand, listing all rele-
vant core functions and their parameters.

harden
The generated code checks for unset arguments
and variables. This impacts readability of the
output but is essential to catch user errors.

log
Write events to the global Aeternity receipts log.

all auxiliaries
The generated code features the options: com-
ments, instructions, harden and log.

Interfacing
This option produces the information needed for
front-end generation for Lexon code:

ui-info
Shows a JSON object encoding insights about
the source code in area c.

Developing Lexon Grammars
The following options support the development
of new Lexon grammars, for different natural
languages other than English.33

keywords
List in c. the keywords – the vocabulary – un-
derstood from an LGF34 grammar provided in a.

bnf
Produce BNF ibid. 19 from an LGF grammar pro-
vided in a. This is useful to verify that optional
terms in the LGF grammar spell out the in-
tended individual BNF rules. The BNF is GNU
Bison-compatible, which can help to create new
targets, i.e., output in additional 3rd generation
programming languages.

33 See http://lexon.org/intro on creating grammars.
34 See Lexon Grammar Form, pg. 4.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 7 www.lexon.org

TOKEN

The Lexon Æternity Token, LÆX, provides ac-
cess to the Lexon online compiler.

UTILITY

The token functions as prepaid voucher for the
online compiler. It buys one translation of a
Lexon text of arbitrary length into the Æternity
blockchain language Sophia.35

The token is AEX-9-compatible36 and eas-
ily accessible through AEX-9-compatible wallets
like AirGap.37

SALE

Purchase
The token can be purchased for Æ at
https://lexon.org/laex.

Use
Tokens can immediately be used with the com-
piler but transferred out only after 30 days.

Transacting
Tokens can be transferred using AEX-9-compat-
ible Æternity wallets. Other specific token
mechanisms – e.g., compilation, AEX-9 approval
– can move tokens, even if in cold storage.

Promotion
First-time visitors have 10 compilations free. A
purchase of tokens is offered automatically after
the 10th compiler run. Professors and students
of law, computer sciences, linguistics, political
sciences, philosophy and related fields can apply
for a drop at https://lexon.org/faculty.

Sponsoring
Tokens can be sponsored to other accounts,
which can use but not transfer the tokens.

Cap
The supply is capped at 100 million tokens. The
sale can be paused, effecting a temporary soft cap.

Price
The price for Lexon Æternity Tokens increases
with the amount of tokens issued.38 This serves
as load protection for the online compiler.

35 See Sophia, pg. 5.
36 AEX-9 is Æternity’s fungible token standard.

Figure 2 – Token sale price based on tokens issued

Current Price
The current price, in Æ, can be learned at
http://lexon.org/laex. The page lists the price
for the next token sold and allows the querying
of the total price for a planned purchase, e.g.,
how many tokens one would receive for 100 Æ.

Price Formula
The token price is calculated by a formula
p = (issued – k) / m ± offset. This has a loga-
rithmic effect in terms of purchasing power: The
increase is steepest in the beginning, relative to
Æ spent, because the same amount of Æ buys
progressively fewer tokens, which drives the
price progressively to a lesser degree. Dampen-
ing the effect, the initial price increase rate (Fig-
ure 2, a.) grows steeper after 50M tokens have
been issued (b.) and again after 90M (c.). For
the respective partial curves, a., b., c., the formu-
lae are:

 PRICE POINT FORMULA

 I S SUED PRICE CURVE

< 50M issued
25M

a.

≥ 50M issued – 40M
5M

b.

≥ 90M issued – 80M
1M

c.

Table 1 – Token price formula

The offset serves as protection against im-
balances from outside the sales mechanism.

Price Points
Some resulting price points are as follows. E.g.,
at exactly 10 million tokens issued, the price for
the next token is 0.4 Æ:

37 AirGap wallet – https://airgap.it/
38 Drops and locked-in sales can be excluded.

38

38

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 8 www.lexon.org

 SELECT PRICE POINTS

 I S SUED PRICE

 1M 0.04 Æ

 10M 0.40 Æ

 100M 20.00 Æ

Table 2 – Token price points

Effective Rebate
For an individual purchase, ten price points are
established to calculate the total price. This ef-
fects a rebate, the steeper the higher the amount
purchased. It can therefore at any point be more
economic to buy in one transaction, instead of
spreading a purchase across multiple transac-
tions.

Figure 3 – Effective rebate (schematic)

CONCLUSION

Lexon’s real-world impact is broad and sus-
tained. It unites developments in computational
law, cryptography, computer sciences, AI39 and
linguistics to achieve long-sought milestones in
each field: digital contract analysis , le-
gal ly enforceable smart contracts, sel f-
documenting code, deterministic language
processing, and an executable human lan-
guage. The resulting accessibi l ity and
agency complement and safeguard generative
AI to drive a productivity increase set to trans-
form commerce, finance, and governance. It
opens new ways even to think about some of the

39 Machine learning is complementary to Lexon, its romp

the perfect fit for the preparatory phase of writing it.
40Prof. Robert Kowalski, 2021, FutureLaw, Stanford –

Together with Blawx and Kowalski’s Logical English:
https://law.stanford.edu/press/new-codex-prize-
awarded-to-computational-law-pioneers-during-9th-
annual-codex-futurelaw-conference/ – regarding the

more intractable-looking challenges of our
times, and solve them.

Lexon’s contribution is unique, a result of
original research. It starts with compiler tech-
nology, built on industry standards for scalabil-
ity and robustness, to enable a language design
that achieves perfect readabil ity, and a
bridge between law and coding. Accordingly,
Lexon has been called the “Holy Grail of Com-
putational Law” and the co-inventor of the AI
language Prolog, Robert Kowalski, named
Lexon among the “next biggest changes.” 40

Lexon addresses a burning platform issue
considered an almost hopeless cause: to lower
the cost of access to justice, to the level
needed to heal our societies. It will de-
weaponize law and level the playing field in
business, protecting creativity and merit against
the deep pockets of incumbents. Because Lexon
is up to a million times cheaper, and a billion
times faster,41 the difference it makes is a qual-
itative one. Over time, it will fundamentally
change how business, law and politics work.

But Lexon can be used to write law, too.
An official proposal for U.C.C. model law ibid. 22
has been presented to the reform committee ap-
pointed by the American Law Institute. Even-
tually, Lexon will be the language that the real
Robotic Laws 42 will be articulated in, to
embed reliable and unambiguous limitations
into autonomous machines. This will be plain-
text code, written by elected lawmakers,
approved in the democratic process.

Lexon even works purely as a lan-
guage, entirely ‘off-machine.’ Because of its
readability and unambiguity, lawyers call it a
new form of legalese. With the Lexon com-
piler as a sui generis test tool.

Being ‘human-readable,’ Lexon is a cata-
lyst for trustless technology. Its digital con-
tracts are at the same time legally enforceable
agreements and unbreakable blockchain smart
contracts. This solves the question whether code
is law.43 It makes contract programs – like those
on blockchains – admissible in court and will
close the digital divide between the legal profes-
sion and the numerous black box automations
that ‘administer justice’ today.

differences between Lexon and Logical English, see
http://lexon.org/intro.

41 See the Lexon book, ibid.
42 See appx. Robotic Laws, pg. 19.
43 See L. Lessig, 2000, Code is Law – https://www.har-

vardmagazine.com/2000/01/code-is-law-html.

38

Æ

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 9 www.lexon.org

Lexon’s far-reaching consequence is a
merging of the legal and the IT space into a
perplexing new reality that may appear unex-
pected but has been envisioned, and worked to-
wards, from the beginning of the computer sci-
ences.44 Its transparency and ease will unleash
enormous power for good, pulling law back to a
semblance of equal justice – a notion as urgently
necessary as it sounds naïve – and drive the
overdue digital reform of democratic govern-
ance, strengthening participation and represen-
tation in the way that many intuit should be
possible with present-day means. For fairer
global commerce, Lexon will help to provide
new rails that are safe, low-cost and transparent
for every participant – in the course of which,
stopping the descent of programming into a
gatekeeping, dark art of the powerful.

An economic and social quantum leap is
what the world needs, according to the assess-
ment of the secretary-general of the UN:

“Something is fundamentally wrong with
our economic and financial system”, António
Guterres told the general assembly,45 reporting
increasing poverty, hunger and burdens of debt.
“It needs a radical transformation.”

The trustless technology for commerce, law
and governance that Lexon enables can provide
the make-over the secretary-general calls for.
This is no co-incidence but the result of focused
research that has been going on since the 1980s,
not only into how the power of computers can
be used for good, but into what could be done
to counter the rampant abuse of digital innova-
tion in all walks of life.46 Lexon brings together
deep tech that emerged from these passionate
efforts, and makes it accessible.

Importantly, Lexon is backwards-compati-
ble: As it is difficult to see how the beneficiaries
of the status quo will be incentivized to help
with meaningful change, the most powerful
transformational aspect of technology is that it
just works. Lexon can drive change, by incre-
mental improvements, because – looping back to
its very essence – it is compatible with what ex-
ists: viz., readable by judges. It was made to
strengthen our most powerful interface,
fashionable cyborg dreams aside: language.

44 Leibniz’ first idea of what should be programmed – in

1666 – was a thousand years old, Roman contract law.
45 A. Guterres, Briefing to the General Assembly on Pri-

orities for 2023 – https://www.un.org/sg/en/con-
tent/sg/speeches/2023-02-06/secretary-generals-brief-
ing-the-general-assembly-priorities-for-2023

The key to creating Lexon programs is the
Lexon compiler. It can be used online with-
out installation at http://lexon.org/sophia.

Payment for its use is made with the
Lexon Æternity Tokens. The tokens can be
purchased at http://lexon.org/laex.

DISCLAIMERS

The information provided in this paper is
strictly for educational purposes. There are no
warranties, express or implied. Any use of this
information is at your own risk. The author does
not assume and hereby disclaims any liability to
any party for any loss, damage, or disruption.
See https://www.gnu.org/licenses/gpl-3.0.txt

Lexon is not an all-purpose human lan-
guage. An unambiguous language is desirable
for programming and lawmaking but less so for
other purposes of human communication.47

Lexon compiler output must be audited be-
fore using it in production. There is no warranty
for fitness for any purpose, nor any other war-
ranty, for the compiler output. See the Li-
cense text at https://lexon.org/license.

The described tokens are not for invest-
ment; they may not work as a store of value.
There may be no secondary market for the to-
kens. The token is not bought back by the is-
suer. The token does not represent a share in a
company or IP. It does not make eligible for any
payment.

LICENSE

There is no claim to the products of the
Lexon compiler. Any text you write in Lexon
and anything you create using the Lexon com-
piler is yours or determined by arrangements
you made.

This document, including appendices, is li-
censed under Creative Commons Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0);48
sources and grammar under AGPL3. 49 Basi-
cally, you can quote, share or modify this docu-
ment but must give credit and allow the same.	

46 See the Lexon book, ibid.
47 Cf. appx. The Principles of Newspeak in G. Orwell,

1949, Nineteen-Eighty-Four. Orwell essentially argues
that words must be ambiguous to be meaningful.

48 https://creativecommons.org/licenses/by-sa/4.0/
49 https://www.gnu.org/licenses/agpl-3.0-standalone.html

© 2023 Henning Diedrich, see pg. 19. 10 www.lexon.org

APPENDIX

EXAMPLE COMPILATION

For the reader’s convenience, the two boxes on this page are a repeat from pages 2 and 5.

LEX Escrow.

"Payer" is a person.
"Payee" is a person.
"Arbiter" is a person.
"Fee" is an amount.

The Payer pays an Amount into escrow, appoints the Payee, appoints the Arbiter, and also fixes the Fee.

CLAUSE: Pay Out.
The Arbiter may pay from escrow the Fee to themselves, and afterwards pay the remainder of the escrow
to the Payee.

CLAUSE: Pay Back.
The Arbiter may pay from escrow the Fee to themselves, and afterwards return the remainder of the
escrow to the Payer.

Source 7 – Lexon code example

Using the barebones option, the Lexon compiler translates the above Lexon code into this Sophia:

@compiler >=6

main contract Escrow =

 record state = {
 payer : address,
 payee : address,
 arbiter : address,
 amount : int,
 fee : int
 }

 entrypoint init(payee : address, arbiter : address, fee : int) = {
 payer = Call.caller,
 payee = payee,
 arbiter = arbiter,
 amount = Call.value,
 fee = fee
 }

 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 function permit(authorized : address) =
 require(Call.caller == authorized,
 "no access")

 stateful entrypoint pay_out() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payee, Contract.balance)

 stateful entrypoint pay_back() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payer, Contract.balance)

Source 8 – Sophia result (barebones)

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 11 www.lexon.org

Using the all auxiliaries option, the Lexon compiler translates the Lexon code from the previous page
into the following Sophia program. Its core functionality is identical to the barebones version, but it has
additional features and comments.

@compiler >=6

include "Option.aes"

/* Lexon-generated Sophia code

 code: Escrow
 file: escrow.lex
 compiler: lexon 0.3 alpha 85
 grammar: 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes
 backend: sophia 0.3.1/85
 target: sophia 7+
 parameters: --sophia --all-auxiliaries
*/

/** LEX Escrow.
 *
 * "Payer" is a person.
 * "Payee" is a person.
 * "Arbiter" is a person.
 * "Amount" is an amount.
 * "Fee" is an amount.
 *
 * The Payer pays an Amount into escrow, appoints the Payee,
 * appoints the Arbiter, and fixes the Fee.
**/

main contract Escrow =

 record state = {
 payer : address,
 payee : address,
 arbiter : address,
 amount : int,
 fee : int }

 entrypoint init(payee : address, arbiter : address, fee : int) =
 payer = Call.caller,
 payee = payee,
 arbiter = arbiter,
 amount = Call.value,
 fee = fee }

 /* token transfer */
 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 /* built-in require function */
 function permit(authorized : address) =
 require(Call.caller == authorized, "no access")

 /*
 * CLAUSE: Pay Out.
 * The Arbiter may pay from escrow the Fee to themselves,
 * and afterwards pay the remainder of the escrow to the Payee.
 */

 stateful entrypoint pay_out() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payee, Contract.balance)

 /*
 * CLAUSE: Pay Back.
 * The Arbiter may pay from escrow the Fee to themselves,
 * and afterwards return the remainder of the escrow to the Payer.
 */

 stateful entrypoint pay_back() =
 permit(state.arbiter)
 transfer(state.arbiter, state.fee)
 transfer(state.payer, Contract.balance)

Source 9 – Lexon compilation example (all auxiliaries)

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 12 www.lexon.org

LEXON FOR LAW

Lexon allows for law to be executed as a program. Asst. prof. Carla L. Reyes of SMU pioneers the use
of Lexon to write statute – shown below – in her seminal 2021 paper Creating Cryptolaw for the Uniform
Commercial Code.50 She created the following Lexon code as a proposal to the commission that is tasked
with the reform of the U.S. trade law, which she advises on blockchain topics. This code could become
model law, be adapted by states to be executed on the computers of their local agencies and protect
billions of dollars of collateral.

The salient point is that the law itself, without further changes is the program that the respective
office runs to implement the law. The productivity gains of Lexon could not be illustrated better.

The motivation for this proposal is a concrete shortfall of the existing statute. Asst. prof. Reyes writes
(emphasis added):

“Under certain conditions, security interests not only bind the creditor and debtor, but
also third-party creditors seeking to lend against the same collateral. To receive this extraor-
dinary benefit, creditors must put the world on notice, usually by filing a financing statement
with the state in which the debtor is located. Unfortunately, the Uniform Commercial Code
(U.C.C.) Article 9 filing system fails to provide actual notice to interested parties and intro-
duces risk of heavy financial losses. To solve this problem, this Article introduces a smart-
contract-based U.C.C.-1 form built using Lexon, an innovative new programming language
that enables the development of smart contracts in English. The proposed “Lexon U.C.C.
Financing Statement” does much more than merely replicate the financing statement in digital
form; it also performs several U.C.C. rules so that, for the first time, the filing system works
as intended. In demonstrating that such a system remains compatible with existing
law, the Lexon U.C.C. Financing Statement also reveals important lessons about the inter-
action of technology and commercial law.” ibid. 50

LEX UCC Financing Statement.

LEXON: 0.2.12

"Financing Statement" is this contract.
"File Number" is data.
"Initial Statement Date" is a time.
"Filer" is a person.
"Debtor" is a person.
"Secured Party" is a person.
"Filing Office" is a person.
"Collateral" is data.
"Digital Asset Collateral" is an amount.
"Reminder Fee" is an amount.
"Continuation Window Start" is a time.
"Continuation Statement Date" is a time.
"Continuation Statement Filing Number" is data.
"Lapse Date" is a time.
"Default" is a binary.
"Continuation Statement" is a binary.
"Termination Statement" is a binary.
"Termination Statement Time" is a time.
"Notification Statement" is a text.

The Filer fixes the Filing Office, fixes the Debtor, fixes the Secured Party, and fixes the Collateral.

50 Washington and Lee Law Review – https://papers. ssrn.com/sol3/papers.cfm?abstract_id=3809901

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 13 www.lexon.org

Clause: Certify.
The Filing Office may certify the File Number.

Clause: Set File Date.
The Filing Office may fix the Initial Statement Date as the current time.

Clause: Set Lapse.
The Filing Office may fix the Lapse Date.

Clause: Set Continuation Start.
The Filing Office may fix the Continuation Window Start.

Clause: Pay Fee.
The Secured Party may pay a Reminder Fee into escrow.

Clause: Notice.
The Filing Office may fix the Notification Statement.

Clause: Notify.
The Filing Office may, if the Continuation Window Start has passed, send the Notification Statement to
the Secured Party.

Clause: Pay Escrow In.
The Debtor may pay the Digital Asset Collateral into escrow.

Clause: Fail to Pay.
The Secured Party may declare Default.

Clause: Take Possession.
The Filing Office may, if Default is declared, pay the Digital Asset Collateral to the Secured Party.

Clause: File Continuation.
The Secured Party may file the Continuation Statement.

Clause: Set Continuation Lapse.
The Filing Office may, if the Continuation Statement is filed, fix the Continuation Statement Date.

Clause: File Termination.
The Secured Party may file a Termination Statement, and certify the Termination Statement Time as the
then current time.

Clause: Release Escrow.
The Filing Office may, if the Termination Statement is filed, return the Digital Asset Collateral to the
Debtor.

Clause: Release Reminder Fee.
The Filing Office may, if the Termination Statement is filed, return the Reminder Fee to the Secured
Party.

Clause: Termination Period.
"Termination Period" is defined as 365 days after the Termination Statement Time.

Clause: Terminate and Clear.
The Filing Office may, if the Termination Period has passed, terminate this contract.

Source 10 – Lexon code example: U.C.C. Filing Statement

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 14 www.lexon.org

The above example is compiled to the following Sophia code, using the --harden option to make the
code safe against certain attacks. The produced code makes use specifically of Sophia’s highly precise
handling of undefined values, employing the option type, a hybrid of a normal atomic type and a value
meaning that no value is given, None. The Lexon text is again used verbatim for comments, exploiting
that Lexon code is per se self-documenting.

/* Lexon-generated Sophia code

 code: UCC Financing Statement

 file: statement.lex

 code tagged: 0.2.12

 compiler: lexon 0.3 alpha 85

 grammar: 0.2.20 / subset 0.3.8 alpha 79 - English / Reyes

 backend: sophia 0.3.1/85

 target: sophia 6+

 options: --sophia --harden
*/

@compiler >=6

include "Option.aes"
using Option

/** LEX UCC Financing Statement.
 *
 * LEXON: 0.2.12
 *
 * "Financing Statement" is this contract.
 * "File Number" is data.
 * "Initial Statement Date" is a time.
 * "Filer" is a person.
 * "Debtor" is a person.
 * "Secured Party" is a person.
 * "Filing Office" is a person.
 * "Collateral" is data.
 * "Digital Asset Collateral" is an amount.
 * "Reminder Fee" is an amount.
 * "Continuation Window Start" is a time.
 * "Continuation Statement Date" is a time.
 * "Continuation Statement Filing Number" is data.
 * "Lapse Date" is a time.
 * "Default" is a binary.
 * "Continuation Statement" is a binary.
 * "Termination Statement" is a binary.
 * "Termination Statement Time" is a time.
 * "Notification Statement" is a text.
 *
 * The Filer fixes the Filing Office, fixes the Debtor, fixes the Secured Party, and fixes the
Collateral.
**/

main contract UCCFinancingStatement =

 record state = {
 file_number : option(string),
 initial_statement_date : option(int),
 filer : option(address),
 debtor : option(address),
 secured_party : option(address),
 filing_office : option(address),
 collateral : option(string),
 digital_asset_collateral : option(int),
 reminder_fee : option(int),
 continuation_window_start : option(int),
 continuation_statement_date : option(int),
 continuation_statement_filing_number : option(string),
 lapse_date : option(int),
 _default : option(bool),
 continuation_statement : option(bool),
 termination_statement : option(bool),
 termination_statement_time : option(int),
 notification_statement : option(string),

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 15 www.lexon.org

 terminated : bool
 }

 datatype event = Message(indexed address, indexed address, string)

 entrypoint init(filing_office : address, debtor : address, secured_party : address,
collateral : string) = {
 file_number = None,
 initial_statement_date = None,
 filer = Some(Call.caller),
 debtor = Some(debtor),
 secured_party = Some(secured_party),
 filing_office = Some(filing_office),
 collateral = Some(collateral),
 digital_asset_collateral = None,
 reminder_fee = None,
 continuation_window_start = None,
 continuation_statement_date = None,
 continuation_statement_filing_number = None,
 lapse_date = None,
 _default = None,
 continuation_statement = None,
 termination_statement = None,
 termination_statement_time = None,
 notification_statement = None,
 terminated = false
 }

 stateful function termination() =
 put(state{terminated = true})

 function check_termination() =
 require(!state.terminated, "contract system terminated before")

 stateful function transfer(to : address, amount : int) =
 Chain.spend(to, amount)

 function send(to : address, message : string) =
 Chain.event(Message(Call.caller, to, message))

 function permit(authorized : option(address)) =
 require(Call.caller == force(authorized), "access")

 /*
 * Clause: Certify.
 * The Filing Office may certify the File Number.
 */

 stateful entrypoint certify(file_number : string) =
 check_termination()
 permit(state.filing_office)
 put(state{file_number = Some(file_number)})

 /*
 * Clause: Set File Date.
 * The Filing Office may fix the Initial Statement Date as the current time.
 */

 stateful entrypoint set_file_date() =
 check_termination()
 permit(state.filing_office)
 put(state{initial_statement_date = Some(Chain.timestamp)})

 /*
 * Clause: Set Lapse.
 * The Filing Office may fix the Lapse Date.
 */

 stateful entrypoint set_lapse(lapse_date : int) =
 check_termination()
 permit(state.filing_office)
 put(state{lapse_date = Some(lapse_date)})

 /*
 * Clause: Set Continuation Start.
 * The Filing Office may fix the Continuation Window Start.
 */

 stateful entrypoint set_continuation_start(continuation_window_start : int) =
 check_termination()
 permit(state.filing_office)
 put(state{continuation_window_start = Some(continuation_window_start)})

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 16 www.lexon.org

 /*
 * Clause: Pay Fee.
 * The Secured Party may pay a Reminder Fee into escrow.
 */

 stateful payable entrypoint pay_fee() =
 check_termination()
 permit(state.secured_party)
 switch(state.reminder_fee)
 None => put(state{reminder_fee = Some(Call.value)})
 Some(_) => put(state{reminder_fee = Some(force(state.reminder_fee) + Call.value)})

 /*
 * Clause: Notice.
 * The Filing Office may fix the Notification Statement.
 */

 stateful entrypoint notice(notification_statement : string) =
 check_termination()
 permit(state.filing_office)
 put(state{notification_statement = Some(notification_statement)})

 /*
 * Clause: Notify.
 * The Filing Office may, if the Continuation Window Start has passed, send the
Notification Statement to the Secured Party.
 */

 entrypoint notify() =
 check_termination()
 permit(state.filing_office)
 if(state.continuation_window_start =< Some(Chain.timestamp))
 send(force(state.secured_party), state.notification_statementx)

 /*
 * Clause: Pay Escrow In.
 * The Debtor may pay the Digital Asset Collateral into escrow.
 */

 stateful payable entrypoint pay_escrow_in() =
 check_termination()
 permit(state.debtor)
 switch(state.digital_asset_collateral)
 None => put(state{digital_asset_collateral = Some(Call.value)})
 Some(_) => put(state{digital_asset_collateral =
Some(force(state.digital_asset_collateral) + Call.value)})

 /*
 * Clause: Fail to Pay.
 * The Secured Party may declare Default.
 */

 stateful entrypoint fail_to_pay() =
 check_termination()
 permit(state.secured_party)
 put(state{_default = true})

 /*
 * Clause: Take Possession.
 * The Filing Office may, if Default is declared, pay the Digital Asset Collateral to the
Secured Party.
 */

 stateful entrypoint take_possession() =
 check_termination()
 permit(state.filing_office)
 if(state._default != None)
 transfer(force(state.secured_party), state.digital_asset_collateral)

 /*
 * Clause: File Continuation.
 * The Secured Party may file the Continuation Statement.
 */

 stateful entrypoint file_continuation(continuation_statement : bool) =
 check_termination()
 permit(state.secured_party)
 put(state{continuation_statement = Some(continuation_statement)})

 /*
 * Clause: Set Continuation Lapse.
 * The Filing Office may, if the Continuation Statement is filed, fix the Continuation
Statement Date.
 */

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 17 www.lexon.org

 stateful entrypoint set_continuation_lapse(continuation_statement_date : int) =
 check_termination()
 permit(state.filing_office)
 if(state.continuation_statement != None)
 put(state{continuation_statement_date = Some(continuation_statement_date)})

 /*
 * Clause: File Termination.
 * The Secured Party may file a Termination Statement, and certify the Termination
Statement Time as the then current time.
 */

 stateful entrypoint file_termination(termination_statement : bool) =
 check_termination()
 permit(state.secured_party)
 put(state{termination_statement = Some(termination_statement)})
 put(state{termination_statement_time = Some(Chain.timestamp)})

 /*
 * Clause: Release Escrow.
 * The Filing Office may, if the Termination Statement is filed, return the Digital Asset
Collateral to the Debtor.
 */

 stateful entrypoint release_escrow() =
 check_termination()
 permit(state.filing_office)
 if(state.termination_statement != None)
 transfer(force(state.debtor), state.digital_asset_collateral)

 /*
 * Clause: Release Reminder Fee.
 * The Filing Office may, if the Termination Statement is filed, return the Reminder Fee to
the Secured Party.
 */

 stateful entrypoint release_reminder_fee() =
 check_termination()
 permit(state.filing_office)
 if(state.termination_statement != None)
 transfer(force(state.secured_party), state.reminder_fee)

 /*
 * Clause: Termination Period.
 * "Termination Period" is defined as 365 days after the Termination Statement Time.
 */

 entrypoint termination_period() =
 Some(state.termination_statement_time + (365 * 86400))

 /*
 * Clause: Terminate and Clear.
 * The Filing Office may, if the Termination Period has passed, terminate this contract.
 */

 stateful entrypoint terminate_and_clear() =
 check_termination()
 permit(state.filing_office)
 if(termination_period() =< Some(Chain.timestamp))
 termination()

Source 11 – Lexon compilation example (hardened): U.C.C. Filing Statement

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 18 www.lexon.org

ABSTRACT SYNTAX TREE

This is a part of the abstract syntax tree (AST), the internal model the compiler creates when processing
the grammar and text discussed in chapter Grammar, pg. 3. It reflects natural language grammar rather
than programming logic. Such a tree can be created from any Lexon text using the flat tree options.

 ↳ statements
 ↳ statement
 ↳ action
 ↳ subject
 ⎸ ↳ symbols
 ⎸ ↳ symbol «payer»
 ⎸ ↳ article
 ↳ predicates
 ↳ predicate
 ⎸ ↳ payment
 ⎸ ↳ pay
 ⎸ ⎸
 ⎸ ↳ expression
 ⎸ ⎸ ↳ combination
 ⎸ ⎸ ↳ combinor
 ⎸ ⎸ ↳ combinand
 ⎸ ⎸ ↳ symbol «amount»
 ⎸ ⎸ ↳ article
 ⎸ ⎸
 ⎸ ↳ preposition
 ⎸ ⎸
 ⎸ ↳ object
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «payee»
 ⎸ ↳ article
 ⎸
 ↳ predicate
 ⎸ ↳ appointment
 ⎸ ↳ appoint
 ⎸ ⎸
 ⎸ ↳ symbol «arbiter»
 ⎸ ↳ article
 ↳ predicate
 ↳ fixture
 ↳ fix
 ↳ symbol «fee»
 ↳ article

Figure 4 – Example of a Lexon abstract syntax tree

To create such a tree for your own Lexon text, at https://lexon.org/sophia paste it into a. (see Figure
1, pg. 5), check options flat and tree in d., click the compile button b. for the tree to appear in c.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 19 www.lexon.org

ROBOTIC LAWS

The science fiction author Isaac Asimov coined the term robotic laws51 in the 1940s for the science fiction
universe over-arching his short stories and novels. He evolved them over time and explored how easily
they can become self-contradictory or exploitable by a rogue machine.

The Laws are so often quoted and well known in nerd culture that they will have informed many
discussions about consequential, real-world decision-making algorithms. They are cited here to indicate
one direction in which lawmaking will have to think – and write – in Lexon when writing statute to rein
in autonomous machines.

First Law A robot may not injure a human being
 or, through inaction, allow a human being to come to harm.

Second Law A robot must obey the orders given it by human beings
 except where such orders would conflict with the First Law.

Third Law A robot must protect its own existence
 as long as such protection does not conflict
 with the First or Second Laws.

◊

51 Isaac Asimov, 1950, I, Robot, pg. 40.

LEXON TO ÆTERNITY

© 2023 Henning Diedrich 20 www.lexon.org

INDICES

INDEX OF FIGURES

Figure 1 – Compiler screen at lexon.org/sophia ... 5
Figure 2 – Token sale price based on tokens issued .. 7
Figure 3 – Effective rebate (schematic) .. 8
Figure 4 – Example of a Lexon abstract syntax tree .. 18

INDEX OF TABLES

Table 1 – Token price formula .. 7
Table 2 – Token price points ... 8

INDEX OF SOURCES

Source 1 – Lexon digital contract example ... 2
Source 2 – Lexon Grammar Form (LGF) example ... 4
Source 3 – Lexon sentence grammar (detail) .. 4
Source 4 – Lexon code example sentence .. 4
Source 5 – Lexon document structure .. 4
Source 6 – Compilation example (barebones) ... 5
Source 7 – Lexon code example .. 10
Source 8 – Sophia result (barebones) .. 10
Source 9 – Lexon compilation example (all auxiliaries) .. 11
Source 10 – Lexon code example: U.C.C. Filing Statement .. 13
Source 11 – Lexon compilation example (hardened): U.C.C. Filing Statement 17

release 1

